[1]郭健,房淑华.非晶合金变压器矩形绕组辐向抗短路能力的校核模型[J].东南大学学报(自然科学版),2015,45(6):1081-1085.[doi:10.3969/j.issn.1001-0505.2015.06.010]
 Guo Jian,Fang Shuhua.Check model of radial short-circuit withstand ability for amorphous alloy transformer rectangular winding[J].Journal of Southeast University (Natural Science Edition),2015,45(6):1081-1085.[doi:10.3969/j.issn.1001-0505.2015.06.010]
点击复制

非晶合金变压器矩形绕组辐向抗短路能力的校核模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第6期
页码:
1081-1085
栏目:
电气工程
出版日期:
2015-11-20

文章信息/Info

Title:
Check model of radial short-circuit withstand ability for amorphous alloy transformer rectangular winding
作者:
郭健1房淑华2
1南京航空航天大学自动化学院, 南京210016; 2东南大学电气工程学院, 南京210096
Author(s):
Guo Jian1 Fang Shuhua2
1School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2School of Electrical Engineering, Southeast University, Nanjing 210096, China
关键词:
非晶合金变压器 矩形绕组 辐向稳定性 压曲分析
Keywords:
amorphous alloy transformer rectangular winding radial stability buckling analysis
分类号:
TM41
DOI:
10.3969/j.issn.1001-0505.2015.06.010
摘要:
基于分枝型失稳理论,建立了非晶合金变压器矩形绕组辐向抗短路能力的有限元校核模型.通过压曲分析可以得到矩形结构线圈的极限压缩力及不同压缩力作用下的压曲模态.对几起非晶合金变压器内绕组的辐向短路耐受能力进行了校核,实验证明了所提计算模型的合理性.与此同时,对影响矩形线圈辐向抗短路能力的因素进行了研究.研究结果表明:撑条的最大间距是防止绕组局部屈曲的最关键因素,绕组内部多处的撑条处于完全失效的支撑状态是导致非晶合金变压器辐向短路强度不足的原因之一;变压器的辐向极限载荷与导线辐向厚度的三次方近似成正比,因此增加导线的辐向厚度对提高非晶合金变压器矩形绕组抗短路能力的效果较明显.
Abstract:
The finite element check model of the radial short-circuit withstand ability of amorphous alloy transformer rectangular winding is built based on the bifurcation instability theory. The buckling analytical method is employed to calculate the buckling critical loads and buckling modes under different compression forces of rectangular winding. The short-circuit withstand capability of several amorphous alloy transformer windings are checked, and the validity of the proposed computational model is proved. At the same time, the influence factors of radial short-circuit withstand ability of rectangular winding are studied. The results show that the maximal spacing of the spacers is the most important factor to prevent the winding from local buckling. A state of complete failure of many inner winding spacers is one of the reasons leading to the shortage of the radial withstand short-circuit ability of amorphous alloy transformer. The transformer radial limit load is approximately proportional to the cube of the thickness of the wire, so the short-circuit withstand ability of rectangular winding can be effectively improved by increasing the radial thickness of the wire.

参考文献/References:

[1] Salach J, Hasse L, Szewczyk R, et al. Low current transformer utilizing co-based amorphous alloys[J]. IEEE Transactions on Magnetics, 2012, 48(4): 1493-1496.
[2] Wang Y S, Zhao X, Han J J. Development of a 630 kVA three-phase HTS transformer with amorphouse alloy cores[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2051-2054.
[3] Rahimpour E, Tenbohlen S.Experimental and theoretical investigation of disc space variation in real high-voltage windings using transfer function method[J]. IET Electric Power Applications, 2010, 4(6): 451-461.
[4] Arivamudhan M, Santhi S. Improved method for winding deformation detection sensitivity in transformer [J]. International Journal of Engineering Science Invention, 2013, 2(10): 48-55.
[5] 姜益民.变压器运行中短路损坏的常见部位及原因分析[J].变压器,2005,42(4):34-38.
  Jiang Yimin. Common position and reason analysis of operating transformer damage by short circuit[J]. Transformer, 2005,42(4):34-38.(in Chinese)
[6] Smeets R P P, Paske L H T,Leufkens P P,et al. Thirteen years test experience with short-circuit withstand capability of large power transformers[C]//Cigre 6th Southern Africa Regional Conference.Somerset West, Southern Africa, 2009:501-1-501-7.
[7] Saravolac M P, Vertigen P A, Sumner C A, et al. Design verification criteria for evaluating the short circuit withstand capability of transformer inner winding[C]//International Council on Large Electric Systems. Paris, France, 2000:208-1-208-9.
[8] Jamali S, Ardebili M, Abbaszadeh K. Calculation of short circuit reactance and electromagnetic forces in three phase transformer by finite element method[C]//Electrical Machines and Systems. Nanjing, China, 2005: 1725-1730.
[9] 郭健, 金承祥, 李宁. 电力变压器辐向承受短路能力的校核计算[J]. 南京航空航天大学学报, 2013,45(2): 239-244.
  Guo Jian, Jin Chengxiang, Li Ning. Check calculation of radial withstand short-circuit ablity for power transformer[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013,45(2): 239-244.(in Chinese)
[10] 王世山, 寇晓,刘家奇,等. 电力变压器内线圈径向屈曲特性的研究[J]. 高电压技术, 2004,30(1): 1-3.
  Wang Shishan, Kou Xiao,Liu Jiaqi, et al. The study of radial buckling properties on inner winding of power transformer[J]. High Voltage Engineering, 2004, 30(1): 1-3.(in Chinese)
[11] Patel M R. Instability of the continuously transposed cable under axial short-circuit forces in transformers[J]. IEEE Transactions on Power Delivery, 2002, 17(1): 149-154.
[12] 梁振光, 王春成, 唐任远,等. 采用大位移几何非线性理论的变压器低压绕组辐向稳定性研究[J]. 变压器, 2002, 39(10): 1-5.
  Liang Zhenguang, Wang Chencheng, Tang Renyuan,et al. Research on radial stability of transformer low-voltage winding using large deformation geometric nonlinear theory[J]. Transformer, 2002, 39(10): 1-5.(in Chinese)
[13] Gopalakrishna S, Kumar K, George B, et al. Design margin for short circuit withstand capability in large power transformers[C]//8th International Power Engineering Conference. Setubal, Portugal, 2007: 1262-1267.
[14] 谢毓城. 电力变压器手册[M]. 北京:机械工业出版社, 2003: 172-178.

备注/Memo

备注/Memo:
收稿日期: 2015-04-06.
作者简介: 郭健(1980—),男,博士,副教授,nuaaeelab_gj@nuaa.edu.cn.
基金项目: 国家自然科学基金资助项目(51307082).
引用本文: 郭健,房淑华.非晶合金变压器矩形绕组辐向抗短路能力的校核模型[J].东南大学学报:自然科学版,2015,45(6):1081-1085. [doi:10.3969/j.issn.1001-0505.2015.06.010]
更新日期/Last Update: 2015-11-20