[1]夏燚,孙立镖,梁彩华,等.具有预凝功能的新型热源塔的构建及模拟[J].东南大学学报(自然科学版),2015,45(6):1108-1113.[doi:10.3969/j.issn.1001-0505.2015.06.015]
 Xia Yi,Sun Libiao,Liang Caihua,et al.Construction and simulation of new-type heat-source tower with pre-condensation function[J].Journal of Southeast University (Natural Science Edition),2015,45(6):1108-1113.[doi:10.3969/j.issn.1001-0505.2015.06.015]
点击复制

具有预凝功能的新型热源塔的构建及模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第6期
页码:
1108-1113
栏目:
能源与动力工程
出版日期:
2015-11-20

文章信息/Info

Title:
Construction and simulation of new-type heat-source tower with pre-condensation function
作者:
夏燚12孙立镖1梁彩华1张小松1
1东南大学能源与环境学院, 南京 210096; 2南京师范大学能源与机械工程学院, 南京 210046
Author(s):
Xia Yi12 Sun Libiao1 Liang Caihua1 Zhang Xiaosong1
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210046, China
关键词:
热源塔 传热传质 预凝功能 模型建立
Keywords:
heat-source tower heat and mass transfer pre-condensation function modeling
分类号:
TK121
DOI:
10.3969/j.issn.1001-0505.2015.06.015
摘要:
针对现有开式热源塔冬季运行时塔内溶液吸湿量大从而影响系统安全运行的问题,提出了一种具有预凝功能的新型热源塔结构.对该新型塔的运行过程进行了理论分析,在对横流热源塔和翅片盘管进行建模和实验验证的基础上,进一步构建了新型塔的数学模型,并对比研究了新型塔和普通塔在不同环境湿度下的传热传质特性.结果发现,随着环境湿度由90%降低到60%,新型塔的换热量相比于普通塔增加了10.9%~12.5%,吸湿量减少了55.2%~76.3%,且随着环境湿度的增加,新型塔吸湿量的增加速率更为缓慢.当环境湿度为40%时,溶液处于再生工况,新型塔的再生量增加了64.3%,证明了新型塔在缓解热源塔内溶液吸湿问题有明显的优势.
Abstract:
Due to the fact that the existing open heat-source tower has high moisture absorption rate in winter affecting the safety of system, a new-type heat-source tower structure with pre-condensation function is proposed. The operation process of the new-type tower is analyzed. The mathematical model of the new-type tower is constructed on the basis of the modelling of cross-flow tower and finned coil which is validated. Comparative simulation on heat and mass transfer characteristics of the new-type tower and ordinary tower are conducted under different ambient humidities. The results show that compared to the ordinary tower, the new-type tower’s heat exchange rate increases by 10.9% to 12.5% as the ambient humidity decreases from 90% to 60%, meanwhile moisture absorption rate decreases from 55.2% to 76.3%. With the increase of ambient humidity, the moisture absorption rate of new-type tower increases more slowly. When the ambient humidity is 40%, the new-type tower’s regeneration rate increases by 64.3%. It is proved that the new-type tower has obvious advantages on relieving the problem of moisture absorption.

参考文献/References:

[1] Wen X T, Liang C H, Zhang X S. Experimental study on heat transfer coefficient between air and liquid in the cross-flow heat-source tower [J]. Building and Environment, 2012, 57(11): 205-213.
[2] Wu J S, Zhang G Q, Zhang Q, et al. Artificial neural network analysis of the performance characteristics of a reversibly used cooling tower under cross flow conditions for heat pump heating system in winter [J]. Energy and Buildings, 2011, 43(7): 1685-1693.
[3] Wu J S, Zhang G Q, Zhang Q, et al. Experimental investigation of the performance of a reversibly used cooling tower heating system using heat pump in winter[C]//Asia-Pacific Power and Energy Engineering Conference. Wuhan, China, 2011: 1-4.
[4] Li N P, Zhang W J, Wang L J, et al. Experimental study on energy efficiency of heat-source tower heat pump units in winter condition[C]//Third International Conference on Measuring Technology and Mechatronics Automation. Shanghai, China, 2011, 2: 135-138.
[5] Zhang Q, Wu J S, Zhang G, et al. Calculations on performance characteristics of counterflow reversibly used cooling towers[J]. International Journal of Refrigeration, 2012, 35(2): 424-433.
[6] Fujita T, Kawahara K. Thermal characteristics of heating towers: Ⅱ crossflow towers [J]. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 1998, 6(3): 275-284.
[7] 文先太, 梁彩华, 刘成兴, 等. 叉流热源塔传热传质模型的建立及实验验证 [J]. 化工学报, 2012, 63(8): 2398-2404.
  Wen Xiantai, Liang Caihua, Liu Chengxing, et al. Verification of model for heat and mass transfer process in cross flow heat-source tower[J]. CIESC Journal, 2012, 63(8): 2398-2404.(in Chinese)
[8] Liang C H, Wen X T, Liu C X, et al. Performance analysis and experimental study of heat-source tower solution regeneration[J]. Energy Conversion and Management, 2014, 85(9): 596-602.
[9] 文先太, 梁彩华, 刘成兴, 等. 基于空气能量回收的热源塔溶液再生系统节能性分析 [J]. 化工学报, 2011, 62(11): 3242-3247.
  Wen Xiantai, Liang Caihua, Liu Chengxing, et al. Energy-saving analysis of solution regeneration in the heat-source tower based on recovery of air energy[J]. CIESC Journal, 2011, 62(11): 3242-3247.(in Chinese)
[10] 刘成兴. 热源塔冬季工况塔内凝水特性研究[D].南京:东南大学能源与环境学院,2013.
[11] 梁彩华,刘成兴,文先太,等. 具有预凝功能的热源塔装置: 中国, 201210365696.9[P]. 2014-06-11.
[12] 王晋生,程宝义,缪小平,等. 任意工况下表冷器的热力计算法[J].暖通空调, 1997, 27: 54-56.
  Wang Jinsheng, Cheng Baoyi, Miao Xiaoping, et al. Simplified thermodynamic calculation of surface-type air coolers for general conditions[J]. Heating Ventilating & Air Conditioning, 1997, 27: 54-56.(in Chinese)
[13] 范晨, 梁彩华, 江楚遥, 等. 空气源热泵结霜/除霜特性的数值模拟[J]. 制冷技术, 2014, 34(1): 18-25.
  Fan Chen, Liang Caihua, Jiang Chuyao, et al. Numerical simulation of frosting/defrosting characteristics of air source heat pump[J]. Journal of Refrigeration, 2014, 34(1): 18-25.(in Chinese)

相似文献/References:

[1]杜斌,施明恒.太阳能平板降膜再生过程的数值模拟[J].东南大学学报(自然科学版),2005,35(6):903.[doi:10.3969/j.issn.1001-0505.2005.06.016]
 Du Bin,Shi Mingheng.Numerical simulation of heat and mass transfer for solar energy regenerator[J].Journal of Southeast University (Natural Science Edition),2005,35(6):903.[doi:10.3969/j.issn.1001-0505.2005.06.016]
[2]文先太,梁彩华,张小松,等.热源塔液气比优化分析与实验研究[J].东南大学学报(自然科学版),2011,41(4):767.[doi:10.3969/j.issn.1001-0505.2011.04.021]
 Wen Xiantai,Liang Caihua,Zhang Xiaosong,et al.Experimental analysis of optimized liquid to gas ratio in heat-source tower[J].Journal of Southeast University (Natural Science Edition),2011,41(6):767.[doi:10.3969/j.issn.1001-0505.2011.04.021]
[3]刘成兴,梁彩华,文先太,等.逆流热源塔传热传质模型建立与凝水调节的可行性[J].东南大学学报(自然科学版),2013,43(4):788.[doi:10.3969/j.issn.1001-0505.2013.04.021]
 Liu Chengxing,Liang Caihua,Wen Xiantai,et al.Modeling of heat and mass transfer in counterflow heat-source tower and feasibility study of moisture condensation control[J].Journal of Southeast University (Natural Science Edition),2013,43(6):788.[doi:10.3969/j.issn.1001-0505.2013.04.021]
[4]闫俊海,张小松,周斌.单个水滴蒸发过冷过程的特性分析[J].东南大学学报(自然科学版),2012,42(4):664.[doi:10.3969/j.issn.1001-0505.2012.04.017]
 Yan Junhai,Zhang Xiaosong,Zhou Bin.Characteristic analysis of single water droplet in evaporative supercooled process[J].Journal of Southeast University (Natural Science Edition),2012,42(6):664.[doi:10.3969/j.issn.1001-0505.2012.04.017]
[5]朱立平,秦霞,袁竹林,等.丝状颗粒在滚筒横向截面中的传热传质特性[J].东南大学学报(自然科学版),2014,44(4):756.[doi:10.3969/j.issn.1001-0505.2014.04.014]
 Zhu Liping,Qin Xia,Yuan Zhulin,et al.Heat and mass transfer characteristics of filamentous particles in transverse section of rotary dryer[J].Journal of Southeast University (Natural Science Edition),2014,44(6):756.[doi:10.3969/j.issn.1001-0505.2014.04.014]
[6]于燕,徐俊超,张,等.生长管中过饱和度在不同构建方式下的分布特性[J].东南大学学报(自然科学版),2016,46(4):733.[doi:10.3969/j.issn.1001-0505.2016.04.010]
 Yu Yan,Xu Junchao,Zhang Jun,et al.Distribution characteristics of supersaturation from different creating methods in growth tube[J].Journal of Southeast University (Natural Science Edition),2016,46(6):733.[doi:10.3969/j.issn.1001-0505.2016.04.010]
[7]司强,徐国英,张小松.辐射诱导空调系统运行和结露特性实验研究[J].东南大学学报(自然科学版),2018,48(2):213.[doi:10.3969/j.issn.1001-0505.2018.02.004]
 Si Qiang,Xu Guoying,Zhang Xiaosong.Experimental study on performance and condensation characteristics of induction radiant air-conditioning system[J].Journal of Southeast University (Natural Science Edition),2018,48(6):213.[doi:10.3969/j.issn.1001-0505.2018.02.004]
[8]于燕,张军,陈广闯,等.分段数对生长管过饱和环境特征的影响[J].东南大学学报(自然科学版),2018,48(2):226.[doi:10.3969/j.issn.1001-0505.2018.02.006]
 Yu Yan,Zhang Jun,Chen Guangchuang,et al.Effects of sections on characteristics of supersaturation in growth tube[J].Journal of Southeast University (Natural Science Edition),2018,48(6):226.[doi:10.3969/j.issn.1001-0505.2018.02.006]
[9]查小波,张伦,张小松.蒸发冷却冷凝除湿复合新风系统优化[J].东南大学学报(自然科学版),2018,48(4):646.[doi:10.3969/j.issn.1001-0505.2018.04.009]
 Zha Xiaobo,Zhang Lun,Zhang Xiaosong.Optimization of the compound fresh air treatment system of evaporative cooling and condensing dehumidification[J].Journal of Southeast University (Natural Science Edition),2018,48(6):646.[doi:10.3969/j.issn.1001-0505.2018.04.009]

备注/Memo

备注/Memo:
收稿日期: 2015-06-02.
作者简介: 夏燚(1980—),男,博士生; 张小松(联系人),男,博士,教授,博士生导师,rachpe@seu.edu.cn.
基金项目: “十二五”国家科技支撑计划资助项目(2011BAJ03B14)、国家自然科学基金重点资助项目(51036001).
引用本文: 夏燚,孙立镖,梁彩华,等.具有预凝功能的新型热源塔的构建及模拟[J].东南大学学报:自然科学版,2015,45(6):1108-1113. [doi:10.3969/j.issn.1001-0505.2015.06.015]
更新日期/Last Update: 2015-11-20