[1]黄维冬,张伦,张小松.间接蒸发冷却多级新风处理系统的性能分析[J].东南大学学报(自然科学版),2016,46(1):55-61.[doi:10.3969/j.issn.1001-0505.2016.01.010]
 Huang Weidong,Zhang Lun,Zhang Xiaosong.Performance analysis of multistage indirect evaporative cooling fresh air processing system[J].Journal of Southeast University (Natural Science Edition),2016,46(1):55-61.[doi:10.3969/j.issn.1001-0505.2016.01.010]
点击复制

间接蒸发冷却多级新风处理系统的性能分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第1期
页码:
55-61
栏目:
能源与动力工程
出版日期:
2016-01-20

文章信息/Info

Title:
Performance analysis of multistage indirect evaporative cooling fresh air processing system
作者:
黄维冬张伦张小松
东南大学能源与环境学院, 南京 210096
Author(s):
Huang Weidong Zhang Lun Zhang Xiaosong
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
蒸发冷却 表冷器 热回收 分析
Keywords:
evaporative cooling cooling coil heat recovery exergy analysis
分类号:
TK123
DOI:
10.3969/j.issn.1001-0505.2016.01.010
摘要:
基于蒸发冷却技术的热回收特性,设计了一种蒸发冷却新风处理系统,并对核心模块采用实验数据及文献中的实验数据进行验证,在此基础之上建立模块和系统的数学模型.模拟结果表明:该系统对于新风独立降温除湿过程具有较大的节能效果和潜力.在新风状态参数为35 ℃、21.68 g/kg,送风状态参数为19.3 ℃、9.0 g/kg,全热回收模块中喷淋填料传质单元数为2.5,表冷器换热能力为1.65 kW/K条件下,系统全热回收效率和排风利用效率在循环水流量为1.6 kg/s时达到最大,分别为72.6%和82.2%.最佳循环水流量随进口空气湿差和温差的增大及表冷器换热能力的减小而增大,喷淋填料传质单元数的变化对最佳循环水流量影响较小.当喷淋填料传质单元数大于1.3时,表冷器换热能力对系统全热回收效率的影响比喷淋填料换热能力要大.
Abstract:
According to the heat recovery characteristic of evaporation cooling, an evaporative cooling fresh air processing system was proposed. Mathematical models of modules and the system were established based on cardinal module verifications using experimental data and literature data. The simulation results show that: during independent cooling and dehumidification of fresh air, this system exhibits remarkable energy-saving effect and potential. Under the condition that the temperature of fresh air is 35 ℃(moisture content 21.68 g), the temperature of supply air is 19.3 ℃(moisture content 9.0 g), the mass transfer unit number of the packings in heat recovery module is 2.5 and the cooling coil heat transfer capability is 1.65 kW/K, the heat recovery efficiency and exhaust exergy utilization efficiency can reach the maximum values of 72.6% and 82.2%, respectively, when circulating water flow is 1.6 kg/s. The optimum circulating water flow rate increases with the increase of the humidity difference and the temperature difference of the inlet air, or the decrease of the heat transfer capability of the cooling coil. A little variation of the optimum flow rate is observed with the changed mass transfer unit number. When the mass transfer unit number of the packing is greater than 1.3, the cooling coil heat transfer capability has greater impact on the heat recovery efficiency than the packing heat transfer capability.

参考文献/References:

[1] Sundell J, Levin H, Nazaroff W W, et al. Ventilation rates and health: Multidisciplinary review of the scientific literature[J]. Indoor Air, 2011, 21(3): 191-204. DOI:10.1111/j.1600-0668.2010.00703.x.
[2] Mardiana-Idayu A, Riffat S B. Review on heat recovery technologies for building applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(2):1241-1255. DOI:10.1016/j.rser.2011.09.026.
[3] 徐方成, 黄翔, 武俊梅. 蒸发冷却与机械制冷复合空调系统分析[J]. 西安工程大学学报, 2008, 22(6): 741-745. DOI: 10.3969/j.issn.1674-649X.2008.06.017.
  Xun Fangcheng, Huang Xiang, Wu Junmei. Analysis of composite air system of evaporative cooling and mechanical refrigeration[J]. Journal of Xi’an Polytechnic University, 2008, 22(6): 741-745. DOI: 10.3969/j.issn.1674-649X.2008.06.017.(in Chinese)
[4] Maheshwari G P, Al-Ragom F, Suri R K. Energy-saving potential of an indirect evaporative cooler[J]. Applied Energy, 2001, 69(1): 69-76. DOI:10.1016/S0306-2619(00)00066-0.
[5] Mazzei P, Palombo A. Economic evaluation of hybrid evaporative technology implementation in Italy[J]. Building & Environment, 1999, 34(5): 571-582. DOI:10.1016/S0360-1323(98)00049-3.
[6] Zhang E Z, Chi Y T. Numerical simulation of the thermal performance of cooling coils[J]. Energy Research & Information, 2001, 17(4): 232-238. DOI:10.13259/j.cnki.eri.2001.04.011.
[7] 许金锋. 表冷器传热系数K的数值分析与研究[D]. 上海:同济大学土木工程学院, 2000.
[8] 路则锋, 陈沛霖, 张旭. 逆流填料式液体除湿系统传热传质过程解析解[J]. 同济大学学报(自然科学版), 2000, 28(3):342-347.
  Lu Zefeng, Chen Peilin, Zhang Xu. Analytical solution of heat and mass transfer processes in packed type counterflow liquid desiccant systems and its verification[J]. Journal of Tongji University(Natural Science), 2000, 28(3):342-347.(in Chinese)
[9] Zhang Lun, Liu Xiaohua, Jiang Yi. Exergy analysis of parameter unmatched characteristic in coupled heat and mass transfer between humid air and water[J]. International Journal of Heat & Mass Transfer, 2015, 84: 327-338. DOI:10.1016/j.ijheatmasstransfer.2015.01.023.
[10] Jiang Yi, Xie Xiaoyun. Theoretical and testing performance of an innovative indirect evaporative chiller[J]. Solar Energy, 2010, 84(12): 2041-2055. DOI:10.1016/j.solener.2010.09.012.

相似文献/References:

[1]查小波,张伦,张小松.蒸发冷却冷凝除湿复合新风系统优化[J].东南大学学报(自然科学版),2018,48(4):646.[doi:10.3969/j.issn.1001-0505.2018.04.009]
 Zha Xiaobo,Zhang Lun,Zhang Xiaosong.Optimization of the compound fresh air treatment system of evaporative cooling and condensing dehumidification[J].Journal of Southeast University (Natural Science Edition),2018,48(1):646.[doi:10.3969/j.issn.1001-0505.2018.04.009]

备注/Memo

备注/Memo:
收稿日期: 2015-08-19.
作者简介: 黄维冬(1990—),男,硕士生;张伦(联系人),男,博士,讲师,zhanglun@seu.edu.cn.
基金项目: “十一五”国家科技支撑计划资助项目(2011BAJ03B14)、国家自然科学基金资助项目(51376044).
引用本文: 黄维冬,张伦,张小松.间接蒸发冷却多级新风处理系统的性能分析[J].东南大学学报(自然科学版),2016,46(1):55-61. DOI:10.3969/j.issn.1001-0505.2016.01.010.
更新日期/Last Update: 2016-01-20