[1]陈云富,张程宾,陈永平.旋转流场中颗粒群的运动特性[J].东南大学学报(自然科学版),2016,46(1):76-80.[doi:10.3969/j.issn.1001-0505.2016.01.013]
 Chen Yunfu,Zhang Chengbin,Chen Yongping.Motion characteristics of particle swarm in rotational flow field[J].Journal of Southeast University (Natural Science Edition),2016,46(1):76-80.[doi:10.3969/j.issn.1001-0505.2016.01.013]
点击复制

旋转流场中颗粒群的运动特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第1期
页码:
76-80
栏目:
其他
出版日期:
2016-01-20

文章信息/Info

Title:
Motion characteristics of particle swarm in rotational flow field
作者:
陈云富张程宾陈永平
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 东南大学能源与环境学院, 南京 210096
Author(s):
Chen Yunfu Zhang Chengbin Chen Yongping
Key Laboratory of Energy Thermal Conversation and Control of Ministry of Education, Southeast University, Nanjing 210096, China
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
颗粒 VOF-DEM 旋转流场 分散
Keywords:
particle VOF-DEM(volume of fluid-discrete element method) rotational flow field dispersion
分类号:
TL632
DOI:
10.3969/j.issn.1001-0505.2016.01.013
摘要:
建立了颗粒群在部分充液旋转容器内水相中运动的非稳态理论模型并进行数值模拟,研究了旋转流场中颗粒群的运动特性.分析了旋转容器内流场、颗粒群演化、颗粒运行轨迹及液体黏度和颗粒密度对颗粒群在水相中分散性能的影响.通过将数值模拟得到的流场中颗粒及速度分布与文献实验数据进行对比,验证了所建立理论模型的合理性.研究结果表明:在旋转容器内水相流场中存在涡流,颗粒群在旋转流场及涡流的作用下运动并逐渐分散至整个水相区域.随着液体黏度的增加,颗粒群在旋转容器内水相中分布更加均匀;颗粒密度的增加,导致颗粒分散驱动力下降,使得颗粒群聚集在水相的旋出侧附近.
Abstract:
An nonstationary theoretical motion model of the particle swarm motion in the water phase in a partly filled rotating container is proposed. Numerical analyses are performed to investigate the motion characteristics of particle swarm in rotational flow field. The influences of flow fields, the evolution of the particle swarm, motion trajectories as well as the liquid viscosity and the particle density on the dispersion performance of the particle swarm are analyzed. A comparison of the particle and velocity distribution between simulation results and experimental data in literature is carried out to valid the proposed mathematical model. The results indicate that the vortex occurs in the water phase, in which the particle swarm move following the vortex and gradually disperse into the whole region of the water phase. The distribution of the particle swarm in the water phase become more uniform with the increase of the liquid viscosity. The driving force of particle dispersion declines with the increase of the particle density.Finally the particle swarm accumulates at the region where the container rotates out the water phase.

参考文献/References:

[1] Ghanem A, Lemenand T, Valle D D, et al. Static mixers: Mechanisms, applications, and characterization methods: A review[J]. Chemical Engineering Research & Design, 2014, 92(2):205-228. DOI:10.1016/j.cherd.2013.07.013.
[2] Thakur R K, Vial C, Nigam K D P, et al. Static mixers in the process industries: A review[J]. Chemical Engineering Research & Design, 2003, 81(7):787-826. DOI:10.1205/026387603322302968.
[3] Wadnerkar D, Utikar R P, Tade M O, et al. CFD simulation of solid-liquid stirred tanks[J]. Advanced Powder Technology, 2012, 23(4): 445-453. DOI:10.1016/j.apt.2012.03.007.
[4] Tamburini A, Cipollina A, Micale G, et al. CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: prediction of solid particle distribution[J]. Chemical Engineering Journal, 2013, 223: 875-890. DOI:10.1016/j.cej.2013.03.048.
[5] 李良超, 杨军, 徐斌. 轻密度颗粒在搅拌槽内悬浮特性的数值模拟[J]. 农业工程学报, 2013, 29(16):42-49. DOI:10.3969/j.issn.1002-6819.2013.16.006.
  Li Liangchao, Yang Jun, Xu Bin. Numerical simulation of solid-liquid suspension characteristics for low-density particles in stirred vessel[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(16): 42-49. DOI:10.3969/j.issn.1002-6819.2013.16.006.(in Chinese)
[6] Jovanovi A, Pezo M, Pezo L, et al. DEM/CFD analysis of granular flow in static mixers[J]. Powder Technology, 2014, 266: 240-248. DOI:10.1016/j.powtec.2014.06.032.
[7] Cundall P A, Strack O D L. Discrete numerical-model for granular assemblies[J]. Géotechnique, 1979,29(1):47-65. DOI: 10.1680/geot.1979.29.1.47.
[8] Kafui K D, Thornton C, Adams M J. Discrete particle-continuum fluid modelling of gas-solid fluidised beds[J]. Chemical Engineering Science, 2002, 57(13): 2395-2410. DOI:10.1016/S0009-2509(02)00140-9.
[9] Sakai M, Shigeto Y, Sun X S, et al. Lagrangian-Lagrangian modeling for a solid-liquid flow in a cylindrical tank[J]. Chemical Engineering Journal, 2012,200-202:663-672. DOI:10.1016/j.cej.2012.06.080.
[10] Sun X S, Sakai M, Yamada Y. Three-dimensional simulation of a solid-liquid flow by the DEM-SPH method[J]. Journal of Computational Physics, 2013, 248: 147-176. DOI:10.1016/j.jcp.2013.04.019.
[11] Sun X S, Sakai M, Sakai M T, et al. A Lagrangian-Lagrangian coupled method for three-dimensional solid-liquid flows involving free surfaces in a rotating cylindrical tank[J]. Chemical Engineering Journal, 2014, 246: 122-141. DOI:10.1016/j.cej.2014.02.049.
[12] Zhang J, Yong L, Fan L S. Discrete phase simulation of gas-liquid-solid fluidization systems: Single bubble rising behavior[J]. Powder Technology, 2000, 113(3):310-326. DOI:10.1016/S0032-5910(00)00314-4.
[13] Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. DOI:10.1016/0021-9991(92)90240-Y.
[14] Crowe C, Schwarzkopf J D, Sommerfeld M, et al. Multiphase flows with droplets and particles [M]. 2nd ed. New York: Taylor & Francis Group, 2012: 119-153.

备注/Memo

备注/Memo:
收稿日期: 2015-08-03.
作者简介: 陈云富(1979—),男,博士生;陈永平(联系人),男,博士,教授,博士生导师, ypchen@seu.edu.cn.
基金项目: 国家自然科学基金NSAF联合基金资助项目(U1530260)、国家自然科学基金资助项目(51306033)、江苏省自然科学基金资助项目(BK20130621).
引用本文: 陈云富,张程宾,陈永平.旋转流场中颗粒群的运动特性[J].东南大学学报(自然科学版),2016,46(1):76-80. DOI:10.3969/j.issn.1001-0505.2016.01.013.
更新日期/Last Update: 2016-01-20