[1]艾志勇,蒋金洋,孙伟,等.Cr8Ni2合金耐蚀钢筋在不同pH值模拟混凝土孔溶液中的钝化行为[J].东南大学学报(自然科学版),2016,46(1):152-159.[doi:10.3969/j.issn.1001-0505.2016.01.025]
 Ai Zhiyong,Jiang Jinyang,Sun Wei,et al.Passive behaviour of Cr8Ni2 alloy corrosion-resistant steel in simulating concrete pore solutions with different pH values[J].Journal of Southeast University (Natural Science Edition),2016,46(1):152-159.[doi:10.3969/j.issn.1001-0505.2016.01.025]
点击复制

Cr8Ni2合金耐蚀钢筋在不同pH值模拟混凝土孔溶液中的钝化行为()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第1期
页码:
152-159
栏目:
化学化工
出版日期:
2016-01-20

文章信息/Info

Title:
Passive behaviour of Cr8Ni2 alloy corrosion-resistant steel in simulating concrete pore solutions with different pH values
作者:
艾志勇12蒋金洋12孙伟12麻晗3张建春3宋丹124王丹芊12
1东南大学材料科学与工程学院, 南京 211189; 2东南大学江苏省土木工程材料重点试验室, 南京 211189; 3江苏省(沙钢)钢铁研究院, 张家港 215625; 4河海大学力学与材料学院, 南京 210098
Author(s):
Ai Zhiyong12 Jiang Jinyang12 Sun Wei12 Ma Han3 Zhang Jianchun3Song Dan124 Wang Danqian12
1School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China
3Research Institute of Jiangsu Shasteel Iron and Steel, Zhangjiagang 215625, China
4College of Mechanics and Materials, Hohai University, Nanjing 210098, China
关键词:
合金耐蚀钢筋 pH值 钝化行为 钝化膜
Keywords:
alloy corrosion resistant steel pH values passive behaviour passive film
分类号:
TQ172.1
DOI:
10.3969/j.issn.1001-0505.2016.01.025
摘要:
应用动电位极化、电化学阻抗谱与电容电位法等方法研究了Cr8Ni2合金耐蚀钢筋在不同pH值(13.5~9.0)模拟混凝土孔溶液中的钝化行为.结果表明:在相同pH值下,随着钝化时间延长,合金耐蚀钢筋钝化不断强化,3 d后钝化趋于稳定;随着pH值下降,合金耐蚀钢筋钝化并未弱化,反而显著增强,表明新型合金耐蚀钢筋在较低pH下亦能保持良好致钝性能.采用XPS分析合金耐蚀钢筋钝化膜组成结构,分析结果表明:合金耐蚀钢筋钝化膜为双层结构,外层主要为Fe3O4,Fe2O3及FeOOH(Fe(OH)3),内层为Cr2O3和CrOOH(Cr(OH)3).随着环境溶液pH值降低,合金耐蚀钢筋钝化膜Fe氧化物含量逐渐减少,而铬氧化物含量明显增大,低pH值下高含量Cr氧化物维持了合金耐蚀钢筋钝化膜良好稳定性和优越耐蚀性,从而使耐蚀钢筋钝化强化.
Abstract:
The passive behaviour of Cr8Ni2 alloy corrosion-resistant steel which was immersed in simulating concrete pore solutions with different pH values(13.5 to 9.0)was investigated by various electrochemical techniques including potentiodynamic polarization, electrochemical impedance spectroscopy and capacitance measurements. The results show that the passivity of the alloy corrosion-resistant steel enhances gradually with the increase of the immersion time, and tends to stability when immersed for 3 days with the same pH values. The passivity is not declined but increases significantly with decrease of pH values, indicating excellent passive performance of the alloy corrosion-resistant steel at lower pH values. The chemical composition of passive films was investigated using XPS(X-ray Photoelectron Spectroscopy). The analytical results show that the passive film formed on the alloy corrosion-resistant steel presents a bilayer structure composed of Cr and Fe oxides/hydroxides. The out layer contains mainly Fe3O4, Fe2O3 and FeOOH(Fe(OH)3), and the inner layer has Cr2O3 and CrOOH(Cr(OH)3). The films on the alloy corrosion-resistant steel become enriched obviously in Cr oxides while depleted in Fe species as pH values dropping. High chromium oxides provide the films favourable stability and superior corrosion resistance, strengthening the passivity of the alloy corrosion-resistant steel at lower pH values.

参考文献/References:

[1] 牛荻涛. 混凝土结构耐久性与寿命预测[M]. 北京:科学出版社, 2003:1-3.
[2] Broomfield J P. Steel corrosion in concrete-Understanding, investigation and repair[M]. 2nd ed.London, England:Taylor & Francis, 2007:112-137.
[3] 龚洛书. 混凝土的耐久性及其防护修补[M]. 北京:中国建筑工业出版社, 1990:119-176.
[4] Serdar M, Zˇulj L V, Bjegovic D. Long-term corrosion behaviour of stainless reinforcing steel in mortar exposed to chloride environment[J]. Corrosion Science, 2013, 69(6):149-157. DOI:10.1016/j.corsci.2012.11.035.
[5] Hurley M, Scully J. Threshold chloride concentrations of selected corrosion resistant rebar materials compared to carbon steel[J]. Corrosion, 2006, 62(10):892-904.
[6] Baddoo N R. Stainless steel in construction: a review of research, applications, challenges and opportunities[J]. Journal of Constructional Steel Research, 2008, 64(11):1199-1206. DOI:10.1016/j.jcsr.2008.07.011.
[7] Presuel-Moreno F, Scully J R, Sharp S R. Literature review of commercially available alloys that have potential as low-cost, corrosion-resistant concrete reinforcement[J]. Corrosion, 2010, 66(8):1542-1546.
[8] Trejo D, Pillai R G. Accelerated chloride threshold testing—Part Ⅱ: Corrosion-resistant reinforcement[J]. ACI Materials Journal, 2004, 101(1):57-64.
[9] Mohamed N. Comparative study of the corrosion behaviour of conventional carbon steel and corrosion resistant reinforcing bars[D]. Saskatoon:University of Saskatchewan, 2009.
[10] 杨忠民,陈颖,王慧敏. 高强耐蚀钢筋[C]//2009全国建筑钢筋生产、设计与应用技术交流研讨会. 北京, 2009:133-137.
[11] 张帆,范植金,吴杰,等. 高强度耐腐蚀含Cr钢筋及其轧制工艺:中国,CN103849820A[P]. 2014-06-11.
[12] 张建春,黄文克,李阳,等. 一种具有高耐腐蚀性的高强钢筋及其制备方法:中国,CN103789677A[P]. 2014-05-14.
[13] 张建春,麻晗,黄文克,等. 一种钢筋及其制备方法:中国,CN104018091A[P]. 2014-09-03.
[14] González J A, Feliú S, Rodríguez P, et al. Some questions on the corrosion of steel in concrete—part Ⅰ: when, how and how much steel corrodes[J]. Materials & Structures, 1996, 29(1): 40-46.
[15] Yu H, Chiang K T K, Yang L. Threshold chloride level and characteristics of reinforcement corrosion initiation in simulated concrete pore solutions[J]. Construction and Building Materials, 2012, 26(1):723-729.
[16] Lu P, Kursten B, Macdonald D D. Deconvolution of the partial anodic and cathodic processes during the corrosion of carbon steel in concrete pore solution under simulated anoxic conditions[J]. Electrochimica Acta, 2014, 143:312-323. DOI:10.1016/j.electacta.2014.08.027.
[17] Grosvenor A P, Kobe B A, Biesinger M C, et al. Investigation of multiplet splitting of Fe2p XPS spectra and bonding in iron compounds[J]. Surface & Interface Analysis, 2004, 36(12):1564-1574.
[18] 陈雯杜,荣归,胡融刚,等. 模拟混凝土孔隙液中钢筋表面膜组成与腐蚀行为的关联[J]. 金属学报, 2011, 47(6):735-742.
  Chen Wendu, Rong Gui, Hu Ronggang, et al. Correlation between composition of reinforcing steel surface film and steel corrosion behavior in simulated concrete pore solutions[J]. Acta Metallurgica Sinica, 2011, 47(6):735-742.(in Chinese)
[19] Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride[J]. Electrochimica Acta, 2012, 64(1):211-220. DOI:10.1016/j.electacta.2012.01.025.
[20] Maurice V, Yang W P, Marcus P. XPS and STM investigation of the passive film formed on Cr(110)single-crystal surfaces[J]. Journal of the Electrochemical Society, 1994, 141(11):3016-3027.
[21] Hakiki N E, Montemor M F, Ferreira M G S, et al. Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel[J]. Corrosion Science, 2000, 42(4):687-702.
[22] Luo H, Dong C F, Xiao K,et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution[J]. Applied Surface Science, 2011, 258(1):631-639.
[23] Pourbaix M. Atlasd’equilibres electrochimiques[M]. Paris: Gauthier-villars, 1963:170.
[24] Olsson C O A, Landolt D. Passive films on stainless steels—chemistry, structure and growth[J]. Electrochimica Acta, 2003, 48(9):1093-1104.
[25] Abreu C M, Cristóbal M J, Losada R, et al. The effect of Ni in the electrochemical properties of oxide layers grown on stainless steels[J]. Electrochimica Acta, 2006, 51(15):2991-3000.
[26] Freire L, Carmezim M J, Ferreira M G S,et al. The passive behaviour of AISI 316 in alkaline media and the effect of pH: a combined electrochemical and analytical study[J]. Electrochimica Acta, 2010, 55(21):6174-6181.
[27] Joiret S, Keddam M, Nóvoa X R, et al. Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH[J]. Cement & Concrete Composites, 2002, 24(1):7-15.
[28] Poursaee A, Hansson C M. Reinforcing steel passivation in mortar and pore solution[J]. Cement & Concrete Research, 2007, 37(7):1127-1133. DOI:10.1016/j.cemconres.2007.04.005.
[29] Feng X G, Tang Y M, Zuo Y. Influence of stress on passive behaviour of steel bars in concrete pore solution[J]. Corrosion Science, 2011, 53(4): 1304-1311. DOI:10.1016/j.corsci.2010.12.030.
[30] 莫里森. 半导体与金属氧化膜的电化学[M]. 吴辉煌,译. 北京:科学出版社, 1988:128-140.
[31] Paola A D. Semiconducting properties of passive films on stainless steels[J]. Electrochimica Acta, 1989, 34(2):203-210. DOI:10.1016/0013-4686(89)87086-0.
[32] Lee J B, Kim S W. Semiconducting properties of passive films formed on Fe-Cr alloys using capacitance measurements and cyclic voltammetry techniques[J]. Materials Chemistry & Physics, 2007, 104(1):98-104. DOI:10.1016/j.matchemphys.2007.02.089.

相似文献/References:

[1]黄玉华,葛艳艳,沙菁洁,等.锥形玻璃纳米孔中溶液浓度和pH值对整流的影响[J].东南大学学报(自然科学版),2014,44(3):526.[doi:10.3969/j.issn.1001-0505.2014.03.014]
 Huang Yuhua,Ge Yanyan,Sha Jingjie,et al.Effects of salt concentration and pH value on ion rectification of conical glass nanopore[J].Journal of Southeast University (Natural Science Edition),2014,44(1):526.[doi:10.3969/j.issn.1001-0505.2014.03.014]
[2]艾志勇,蒋金洋,孙伟,等.新型合金耐蚀钢筋Cr10Mo1的阴极行为及其阻抑机制[J].东南大学学报(自然科学版),2016,46(4):872.[doi:10.3969/j.issn.1001-0505.2016.04.033]
 Ai Zhiyong,Jiang Jinyang,Sun Wei,et al.Cathodic behaviour of new alloy corrosion-resistant steel Cr10Mo1 and its depression mechanism[J].Journal of Southeast University (Natural Science Edition),2016,46(1):872.[doi:10.3969/j.issn.1001-0505.2016.04.033]
[3]彭尔兴,章定文,周利,等.施氏假单胞菌应用于IPS技术的可行性试验研究[J].东南大学学报(自然科学版),2017,47(1):170.[doi:10.3969/j.issn.1001-0505.2017.01.029]
 Peng Erxing,Zhang Dingwen,Zhou Li,et al.Feasibility experiment on using pseudomonas stutzeri in IPS[J].Journal of Southeast University (Natural Science Edition),2017,47(1):170.[doi:10.3969/j.issn.1001-0505.2017.01.029]

备注/Memo

备注/Memo:
收稿日期: 2015-07-10.
作者简介: 艾志勇(1987—),男,博士生;孙伟(联系人),女,教授,博士生导师,中国工程院院士, sunwei@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51278098)、国家重点基础研究发展计划(973计划)资助项目(2015CB655100)、江苏省产学研联合创新资金资助项目(BY2013091).
引用本文: 艾志勇,蒋金洋,孙伟,等.Cr8Ni2合金耐蚀钢筋在不同pH值模拟混凝土孔溶液中的钝化行为[J].东南大学学报(自然科学版),2016,46(1):152-159. DOI:10.3969/j.issn.1001-0505.2016.01.025.
更新日期/Last Update: 2016-01-20