[1]张君,段钰锋,赵蔚欣,等.低温等离子体强化燃煤烟气Hg0氧化的气氛影响及特性分析[J].东南大学学报(自然科学版),2016,46(2):297-303.[doi:10.3969/j.issn.1001-0505.2016.02.012]
 Zhang Jun,Duan Yufeng,Zhao Weixin,et al.Influence of gas composition and characteristic analysis on oxidation of Hg0 in coal-fired flue gas by non-thermal plasma[J].Journal of Southeast University (Natural Science Edition),2016,46(2):297-303.[doi:10.3969/j.issn.1001-0505.2016.02.012]
点击复制

低温等离子体强化燃煤烟气Hg0氧化的气氛影响及特性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第2期
页码:
297-303
栏目:
环境科学与工程
出版日期:
2016-03-20

文章信息/Info

Title:
Influence of gas composition and characteristic analysis on oxidation of Hg0 in coal-fired flue gas by non-thermal plasma
作者:
张君段钰锋赵蔚欣朱纯周强佘敏
东南大学能源热转换及其过程测控教育部重点实验室, 南京210096
Author(s):
Zhang Jun Duan Yufeng Zhao Weixin Zhu Chun Zhou Qiang She Min
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
低温等离子体 燃煤烟气 汞氧化 氧自由基
Keywords:
non-thermal plasma coal-fired flue gas mercury oxidation oxygen free radical
分类号:
X511
DOI:
10.3969/j.issn.1001-0505.2016.02.012
摘要:
为了研究燃煤烟气成分对低温等离子体氧化元素汞的影响,以石英玻璃管为阻挡介质,内插不锈钢棒为高压放电极, 利用交流高压放电产生低温等离子体强化模拟烟气中Hg0氧化.研究输入能量和烟气成分对模拟烟气中Hg0形态转化与协同脱硫脱硝的影响规律.结果表明,初始时Hg0氧化率随输入能量增大而提高,原因是模拟烟气中O2分解产生的O自由基数目增多,但输入能量过大会促使模拟烟气中N2分解,生成NO并消耗O自由基,导致Hg0氧化率下降.烟气中O2和CO2含量增大,分解产生的自由基O数量增多,有利于Hg0氧化反应.低温等离子可将NO和SO2分解成N2和S,同时产生能够促进Hg0氧化的O自由基,因此低温等离子促进NO和SO2氧化Hg0的同时可实现脱硫脱硝的目的.
Abstract:
To study the effect of coal-fired flue gas composition on the oxidation of Hg0 by using non-thermal plasma, the quartz glass tube and the stainless steel rode were used as the barrier medium and the high voltage discharge electrode, respectively, and the Hg0 in simulated flue gas was oxidized by alternative current high voltage discharge non-thermal plasma. The effects of input energy and gas composition on the mercury speciation transformation and the simultaneous desulfurization and denitration in simulated flue gas were investigated. The results show that the oxidation efficiency of Hg0 increases with the increase of the input energy in the initial stage. The reason is that the contents of free radical O increases by O2 decomposition, but N2 in simulated flue gas decomposes when the input energy is large enough, which consumes free radical O and produces NO, leading to the decrease of elemental mercury oxidation efficiency. The content of free radical O increases with the increase of the contents of O2 and CO2 in simulated flue gas, which can promote Hg0 oxidation. NO and SO2 can be decomposed into N2 and S by non-thermal plasma, and free radical O which can oxidize Hg0 is simultaneously produced. Therefore, non-thermal plasma can promote NO and SO2 to react with Hg0 and realize desulfurization and denitration.

参考文献/References:

[1] Xu W Q, Wang H R, Zhu T Y. Mercury removal from coal combustion flue gas by modified fly ash [J]. Journal of Environmental Sciences, 2013, 25(2):393-398. DOI:10.1016/S1001-0742(12)60065-5.
[2] Zheng Y J, Jensen A D, Windelin C, et al. Review of technologies for mercury removal from flue gas from cement production processes[J]. Progress in Energy and Combustion Science, 2012, 38(5): 599-629. DOI:10.1016/j.pecs.2012.05.001.
[3] Environmental P A.National emission standards for hazardous air pollutants from coal-and oil-fired electric utility steam generating units and standards of performance for fossil-fuel-fired electric utility, industrial-commercial-institutional, and small industrial-commercial-institutional steam generating units [S].Washigton DC, USA: Federal Register, 2011.
[4] 中国环境科学研究院,国电环境保护研究院.GB 13223—2011火电厂大气污染物排放标准 [S].北京:中国环境科学出版社,2011.
[5] Graydon J W, Zhang X Z, Kirk D W, et al.Sorption and stability of mercury on activated carbon for emission control [J]. Journal of Hazardous Materials, 2009, 168(2/3): 978-982. DOI:10.1016/j.jhazmat.2009.02.118.
[6] Sjostrom S, Durham M, Bustard C J, et al. Activated carbon injection for mercury control:overview[J]. Fuel, 2010, 89(6): 1320-1322. DOI:10.1016/j.fuel.2009.11.016.
[7] Wang S X, Zhang L, Li G H, et al. Mercury emission and speciation of coal-fired power plants in China [J]. Atmospheric Chemistry and Physics, 2010, 10(3): 1183-1192. DOI:10.5194/acp-10-1183-2010.
[8] Senior C L. Behavior of mercury in air pollution control devices on coal-fired utility boilers[C]//Presented for Power Production in the 21st Century: Impacts of Fuel Quality and Operations Engineering Foundation Conference. Salt Lake City, USA, 2001:1-17.
[9] Yang H M,Pan W P. Transformation of mercury speciation through the SCR system in power plants [J].Journal of Environmental Sciences, 2007, 9(2): 181-184.DOI:10.1016/S1001-0742(07)60029-1.
[10] Cao Y,Chen B,Wu J,et al.Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal [J].Energy & Fuels, 2007, 21(1):145-156. DOI:10.1021/ef0602426.
[11] Kim Heejoon, Jun Han, Sakaguchi Yuhei, et al. Simultaneous oxidization of NOx and SO2 by a newnon-thermal plasma reactor enhanced by catalyst and additive [J]. Plasma Sci Technol, 2008, 10(1): 53-56. DOI:10.1088/1009-0630/10/1/11.
[12] Calvert J G, Lindberg S E. Mechanism of mercury removal by O3 and OH in the atmosphere [J]. Atmospheric Environment, 2005, 39(18): 3355-3367. DOI:10.1016/j.atmosenv.2005.01.055.
[13] Chang J S. Physics and chemistry of plasma pollution control technology[J]. Plasma Sources Sci Technol, 2008, 17(4): 045004-1-045004-16. DOI:10.1088/0963-0252/17/4/045004.
[14] Kyung B K, Byun Y C, Cho M Y, et al. Influence of gas components on the oxidation of elemental mercury by positive pulsed corona discharge[J]. Main Group Chemistry, 2008, 7(3):191-204.
[15] Byun Y, Koh D J, Shin D N. Removal mechanism of elemental mercury by using non-thermal plasma[J].Chemosphere, 2011, 83(1): 69-75. DOI:10.1016/j.chemosphere.2010.12.003.
[16] Byun Y C, Ko K B, Cho M Y, et al. Oxidation of elemental mercury using atmospheric pressure non-thermal plasma[J]. Chemosphere, 2008, 72(4): 652-658. DOI:10.1016/j.chemosphere.2008.02.021.
[17] 唐军旺,杨黄河,任丽丽,等.微波放电脱除NO[J]. 高等学校化学学报,2002, 23(4):632-635.
  Tang Junwang, Yang Huanghe, Ren Lili, et al. The decomposition of NO in microwave discharge [J].Chemical Journal of Chinese Universities, 2002, 23(4): 632-635.(in Chinese)
[18] Yokoyama T, Asakura K, Matsuda H, et al. Mercury emissions from a coal-fired power plant in Japa[J].Sci Total Environ, 2000, 259(1/2/3): 97-103.
[19] Jeong J Y, Jurng J S. Removal of gaseous elemental mercury by dielectric barrier discharge[J].Chemosphere, 2007, 68(10): 2007-2010. DOI:10.1016/j.chemosphere.2007.01.044.
[20] Chen Z Y, Mannava D P, Mathur V K. Mercury oxidization in dielectric barrier discharge plasma system [J]. Industrial & Engineering Chemical Research, 2006, 45(17): 6050-6055.
[21] Wang Z H, Jiang S D, Zhu Y Q, et al. Investigation on elemental mercury oxidation mechanism by non-thermal plasma treatment[J]. Fuel Processing Technology, 2010, 91(11): 1395-1400.DOI:10.1016/j.fuproc.2010.05.012.
[22] 姚文龙, 张凡, 王洪昌. 介质阻挡放电等离子体分解CO2[J]. 环境科学研究, 2010,23(9): 1192-1195.
  Yao Wenlong, Zhang Fan, Wang Hongchang. Decomposition of carbon dioxide by dielectric barrier discharge plasma [J]. Research Academy of Environmental Sciences, 2010, 23(9): 1192-1195.(in Chinese)
[23] 王文春, 吴彦,李学初, 等. NO, N2气体中电晕放电高能电子密度分布的光谱实验研究 [J]. 环境科学学报, 1998, 18(1): 51-55.
  Wang Wenchun, Wu Yan, Li Xuechu, et al. Electronic density distribution produced in corona discharge of NO+N2 mixture along the radial of line-cylinder reactor [J]. Journal of Environmental Sciences, 1998, 18(1): 51-55.(in Chinese)

相似文献/References:

[1]肖梅,凌一鸣.低温等离子体在材料表面改性中的应用[J].东南大学学报(自然科学版),2001,31(1):114.[doi:10.3969/j.issn.1001-0505.2001.01.026]
 Xiao Mei,Ling Yiming.Application of Cold Plasma in Surface Modification[J].Journal of Southeast University (Natural Science Edition),2001,31(2):114.[doi:10.3969/j.issn.1001-0505.2001.01.026]
[2]潘丹萍,吴昊,黄荣廷,等.石灰石-石膏法烟气脱硫过程中SO3酸雾脱除特性[J].东南大学学报(自然科学版),2016,46(2):311.[doi:10.3969/j.issn.1001-0505.2016.02.014]
 Pan Danping,Wu Hao,Huang Rongting,et al.Removal properties of sulfuric acid mist during limestone-gypsum flue gas desulfurization process[J].Journal of Southeast University (Natural Science Edition),2016,46(2):311.[doi:10.3969/j.issn.1001-0505.2016.02.014]

备注/Memo

备注/Memo:
收稿日期: 2015-08-04.
作者简介: 张君(1981—),男,博士生;段钰锋(联系人),男,博士,教授,博士生导师,yfduan@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51076030,51376046)、中央高校基本科研业务费专项资金资助项目、江苏省研究生科研创新计划资助项目(KYLX_0184,CXZZ13_0093,KYLX_0115).
引用本文: 张君,段钰锋,赵蔚欣,等.低温等离子体强化燃煤烟气Hg0氧化的气氛影响及特性分析[J].东南大学学报(自然科学版),2016,46(2):297-303. DOI:10.3969/j.issn.1001-0505.2016.02.012.
更新日期/Last Update: 2016-03-20