[1]潘丹萍,吴昊,黄荣廷,等.石灰石-石膏法烟气脱硫过程中SO3酸雾脱除特性[J].东南大学学报(自然科学版),2016,46(2):311-316.[doi:10.3969/j.issn.1001-0505.2016.02.014]
 Pan Danping,Wu Hao,Huang Rongting,et al.Removal properties of sulfuric acid mist during limestone-gypsum flue gas desulfurization process[J].Journal of Southeast University (Natural Science Edition),2016,46(2):311-316.[doi:10.3969/j.issn.1001-0505.2016.02.014]
点击复制

石灰石-石膏法烟气脱硫过程中SO3酸雾脱除特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第2期
页码:
311-316
栏目:
环境科学与工程
出版日期:
2016-03-20

文章信息/Info

Title:
Removal properties of sulfuric acid mist during limestone-gypsum flue gas desulfurization process
作者:
潘丹萍吴昊黄荣廷张亚平杨林军
东南大学能源热转换及其过程测控教育部重点实验室, 南京210096
Author(s):
Pan Danping Wu Hao Huang Rongting Zhang Yaping Yang Linjun
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
石灰石-石膏法脱硫 燃煤烟气 SO3酸雾 脱除
Keywords:
limestone-gypsum desulphurization coal-fired flue gas sulfuric acid mist removal
分类号:
X51
DOI:
10.3969/j.issn.1001-0505.2016.02.014
摘要:
基于石灰石-石膏法烟气脱硫工艺,分析探讨了湿法烟气脱硫(WFGD)过程中对SO3酸雾脱除机理,并考察了脱硫操作条件、塔入口烟气飞灰浓度及不同煤质组分对SO3酸雾脱除效率的影响.结果表明,湿法烟气脱硫过程中SO3酸雾可通过脱硫浆液的吸收以及对吸附SO3酸雾颗粒物的捕集而脱除.单塔湿法烟气脱硫系统对SO3酸雾脱除效率为25%~50%;随着脱硫液气比和脱硫塔入口飞灰浓度增加、脱硫入口烟气温度下降,湿法烟气脱硫系统对SO3酸雾脱除效率均有所提高.实际电厂双塔湿法烟气脱硫系统对SO3酸雾脱除效率为50%~65%,随着煤中硫分与灰分的增加,SO3酸雾脱除效率随之提高.
Abstract:
Based on the limestone-gypsum flue gas desulphurization technology, the removal mechanism of sulfuric acid mist during the wet flue gas desulphurization process(WFGD)was analyzed, and effects of desulfurization operational conditions, fly ash concentration before desulfurization and coal quality on sulfuric acid mist removal efficiency were also investigated. The results show that the sulfuric acid mist can be removed by the absorption of the desulfurization slurry and the capture of particles absorbing sulfuric acid mist. The sulfuric acid mist removal efficiency across the single desulfurization scrubber is from 25% to 50%. With the increase of the gas-liquid ratio and the fly ash concentration before desulfurization, and the decrease of flue gas temperature before desulfurization, the sulfuric acid mist removal efficiency increases. For the desulfurization process with double scrubbers in a certain power plant, the sulfuric acid mist removal efficiency is from 50% to 65%. With the increasing content of sulfur and ash in the coal, the removal efficiency increases.

参考文献/References:

[1] 杨彦. 火力发电厂湿法烟气脱硫系统烟囱腐蚀与防腐研究[D]. 北京:北京交通大学土木建筑工程学院, 2010.
[2] Srivastava R K, Miller C A, Erickson C, et al. Emissions of sulfur trioxide from coal-fired power plants[J]. Journal of the Air & Waste Management Association, 2004, 54(6): 750-762.
[3] Gray S M, Jarvis J B, Kosler S W. Combined mercury and SO3 removal using SBS injection[J]. Power, 2014, 158(7): 22-26.
[4] Wang Z Q, Huan Q C, Qi C L, et al. Study on the removal of coal smoke SO3 with CaO[J]. Energy Procedia, 2012, 14: 1911-1917. DOI:10.1016/j.egypro.2011.12.1187.
[5] Kikkawa H, Shimohira W, Nagayasu T, et al. Highly-efficient removal of toxic trace elements and particulate matter in flue gas emitted from coal-fired power plants by air quality control system(AQCS)[J]. Mitsubishi Heavy Industries Technical Review, 2015, 52(2): 88.
[6] 赵琴霞, 陈招妹, 周超炯,等. 湿式电除尘技术及其在电厂的应用前景探讨[J]. 电力科技与环保, 2012, 28(4):24-26. DOI:10.3969/j.issn.1674-8069.2012.04.008.
  Zhao Qinxia, Chen Zhaomei, Zhou Chaojiong, et al. Discussion on wet ESP technology and its application prospect in coal-fired power plants[J]. Electric Power Environmental Protection, 2012, 28(4):24-26. DOI:10.3969/j.issn.1674-8069.2012.04.008.(in Chinese)
[7] 刘鹤忠, 陶秋根. 湿式电除尘器在工程中的应用[J]. 电力勘测设计, 2012(3):43-47. DOI:10.3969/j.issn.1671-9913.2012.03.010.
  Liu Hezhong, Tao Qiugen. Exploration application of wet electric dust catcher to engineering[J]. Electric Power Survey & Design, 2012(3):43-47. DOI:10.3969/j.issn.1671-9913.2012.03.010.(in Chinese)
[8] 闫君. 湿式静电除雾器脱除烟气中酸雾的试验研究[D]. 济南:山东大学能源与动力工程学院, 2010.
[9] Spoörl R, Walker J, Belo L, et al. SO3 emissions and removal by ash in coal-fired oxy-fuel combustion[J]. Energy & Fuels, 2014, 28(8): 5296-5306.
[10] Fleig D, Andersson K, Johnsson F. Influence of operating conditions on SO3 formation during air and oxy-fuel combustion[J]. Industrial & Engineering Chemistry Research, 2012, 51(28): 9483-9491.
[11] Kamata H, Ohara H, Takahashi K, et al. SO2 oxidation over the V2O5/TiO2 SCR catalyst[J]. Catalysis Letters, 2001, 73(1): 79-83.
[12] Schwaemmle T, Heidel B, Brechtel K, et al. Study of the effect of newly developed mercury oxidation catalysts on the DeNOxx-activity and SO2-SO3-conversion[J]. Fuel, 2012, 101: 179-186. DOI:10.1016/j.fuel.2010.11.043.
[13] Berndt T, Böge O, Conrath T, et al. Formation of new particles in the system H2SO4(SO3)/H2O/(NH3)-first results from a flow-tube study[J]. Journal of Aerosol Science, 2000, 31(1): 554-555.
[14] Sinanis S, Wix A, Ana L, et al. Characterization of sulphuric acid and ammonium sulphate aerosols in wet flue gas cleaning processes[J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(1): 22-30. DOI:10.1016/j.cep.2007.07.011.
[15] Brachert L, Kochenburger T, Schaber K. Facing the sulfuric acid aerosol problem in flue gas cleaning: Pilot plant experiments and simulation[J]. Aerosol Science and Technology, 2013, 47(10): 1083-1091. DOI:10.1080/02786826.2013.824549.
[16] Brachert L, Mertens J, Khakharia P, et al. The challenge of measuring sulfuric acid aerosols: Number concentration and size evaluation using a condensation particle counter(CPC)and an electrical low pressure impactor(ELPI+)[J]. Journal of Aerosol Science, 2014, 67: 21-27. DOI:10.1016/j.jaerosci.2013.09.006.
[17] Gooch J P, Dismukes E B. Formation of sulfate aerosol in a SO2 scrubbing system[C]//Formation, Distribution, Impact, and Fate of Sulfur Trioxide in Utility Flue Gas Streams Conference. Pittsburgh, PA, USA, 1998.
[18] 常景彩, 董勇, 王志强,等. 燃煤烟气中SO3转换吸收特性模拟实验[J]. 煤炭学报, 2010, 35(10):1717-1720.
  Chang Jingcai, Dong Yong, Wang Zhiqiang, et al. Simulation experiment of SO3 conversion and absorption characteristics in coal-fire flue gas[J]. Journal of Coal Society, 2010, 35(10):1717-1720.(in Chinese)
[19] Mirabel P, Katz J L. Binary homogeneous nucleation as a mechanism for the formation of aerosols[J]. Journal of Chemical Physics, 1974, 60(3): 1138-1144. DOI:10.1063/1.1681124.

相似文献/References:

[1]张君,段钰锋,赵蔚欣,等.低温等离子体强化燃煤烟气Hg0氧化的气氛影响及特性分析[J].东南大学学报(自然科学版),2016,46(2):297.[doi:10.3969/j.issn.1001-0505.2016.02.012]
 Zhang Jun,Duan Yufeng,Zhao Weixin,et al.Influence of gas composition and characteristic analysis on oxidation of Hg0 in coal-fired flue gas by non-thermal plasma[J].Journal of Southeast University (Natural Science Edition),2016,46(2):297.[doi:10.3969/j.issn.1001-0505.2016.02.012]

备注/Memo

备注/Memo:
收稿日期: 2015-08-10.
作者简介: 潘丹萍(1989—),女,博士生;杨林军(联系人),男,博士,教授,博士生导师,ylj@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(21276049)、国家重点基础研究发展计划(973计划)资助项目(2013CB228505)、国家高科技研究发展计划(863计划)资助项目(2013AA065004)、江苏省环境监测科研基金资助项目(1412).
引用本文: 潘丹萍,吴昊,黄荣廷,等.石灰石-石膏法烟气脱硫过程中SO3酸雾脱除特性[J].东南大学学报(自然科学版),2016,46(2):311-316. DOI:10.3969/j.issn.1001-0505.2016.02.014.
更新日期/Last Update: 2016-03-20