[1]曹轲,李国强,陈素文,等.K4级可自动升降式防撞柱系统性能的数值分析[J].东南大学学报(自然科学版),2016,46(2):353-359.[doi:10.3969/j.issn.1001-0505.2016.02.020]
 Cao Ke,Li Guoqiang,Chen Suwen,et al.Numerical investigation of K4-rating auto-lifting anti-ram bollard system[J].Journal of Southeast University (Natural Science Edition),2016,46(2):353-359.[doi:10.3969/j.issn.1001-0505.2016.02.020]
点击复制

K4级可自动升降式防撞柱系统性能的数值分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第2期
页码:
353-359
栏目:
土木工程
出版日期:
2016-03-20

文章信息/Info

Title:
Numerical investigation of K4-rating auto-lifting anti-ram bollard system
作者:
曹轲1李国强12陈素文12孙建运3
1同济大学土木工程学院, 上海 200092; 2同济大学土木工程防灾国家重点实验室, 上海 200092; 3中国建筑技术中心, 北京 101300
Author(s):
Cao Ke1 Li Guoqiang12 Chen Suwen12 Sun Jianyun3
1College of Civil Engineering, Tongji University, Shanghai 200092, China
2State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
3China State Construction Technic
关键词:
汽车撞击 防撞柱系统 数值模拟 边界条件 正交试验
Keywords:
vehicle impact anti-ram bollard system numerical simulation boundary condition orthogonal experiment
分类号:
TU312
DOI:
10.3969/j.issn.1001-0505.2016.02.020
摘要:
为研究K4级可自动升降式防撞柱系统的性能,采用数值方法对该系统进行了车辆撞击全过程模拟.采用修正后车辆模型进行撞击模拟,并将模拟结果与实车试验数据进行对比,以验证模型的有效性.基于此模型研究了不同边界条件对防撞柱系统性能的影响,并通过32组正交数值试验,得到防撞柱各影响参数的显著性排序.研究结果表明,当土体压缩模量较小时,钢管防撞柱最大转角随土体压缩模量的增大而减小;当土体压缩模量大于10 MPa时,最大转角随土体压缩模量的增大而增大.在所有影响因素中,外套筒与底部构造的间隙对防撞柱系统性能的影响最大.建议在实际工程中将基础周围土体的压缩模量控制为8.5~12.0 MPa,并尽可能减小防撞柱底部构造与外套筒的间隙.
Abstract:
To study the performance of the K4-rating auto-lifting anti-ram bollard system(AABS), the vehicle impact process is simulated by using the numerical method. The impact simulation is carried out by using a modified truck model, and the simulation results are compared with the real vehicle test results to verify the validity of the proposed model. Based on the numerical model, the effects of the boundary conditions on the performance of the AABS are investigated. By using 32 orthogonal numerical experiments, the significance order of the parameters is obtained. The results show that when the compression modulus is small, the maximum rotate angle of the steel anti-ram bollard decreases with the increase of the compression modulus. But when the compression modulus is greater than 10 MPa, the maximum rotate angle increases with the increase of the compression modulus. Among all the parameters, the gap between the substructure and the outer sleeve is the most important factor affecting the performance of the AABS. In practical engineering, the compression modulus of the surrounding soil is suggested to be 8.5 to 12.0 MPa and the gap between the substructure and the outer sleeve is advised to be as small as possible.

参考文献/References:

[1] Hayes J R, Woodson S C, Pekelnicky R G. Can strengthening for earthquake improve blast and progressive collapse resistance?[J]. Journal of Structural Engineering, 2005, 131(8): 1157-1177. DOI:10.1061/(ASCE)0733-9445(2005)131:8(1157).
[2] Schleyer G K, Lowak M J, Polcyn M A, et al. Experimental investigation of blast wall panels under shock pressure loading[J]. International Journal of Impact Engineering, 2007, 34(6): 1095-1118. DOI:10.1016/j.ijimpeng.2006.05.006.
[3] Coughlin A M, Musselman E S, Schokker A J, et al. Behavior of portable fiber reinforced concrete vehicle barriers subject to blasts from contact charges[J]. International Journal of Impact Engineering, 2010, 37(5): 521-529. DOI:10.1016/j.ijimpeng.2009.11.004.
[4] Hu B, Li G Q, Sun J Y. Numerical investigation of K4-rating shallow footing fixed anti-ran bollard system subject to vehicle impact[J]. International Journal of Impact Engineering, 2014, 63(1): 72-87. DOI:10.1016/j.ijimpeng.2013.08.006.
[5] United States Department of State. SD-STD-02.01 Test method for vehicle crash testing of perimeter barriers and gates[S]. Washington DC: United States Department of State, 2003.
[6] Bollards A-R. Crash test report for perimeter barriers and gates tested to SD-STD-02.01, Revision A, March 2003[R]. Upland, CA, USA: RSA Protective Techologies, LLC, 2005.
[7] 肖岩,陈琳,肖果,等. 防撞柱实车碰撞性能研究[J]. 振动与冲击,2013, 32(11): 1-6. DOI:10.3969/j.issn.1000-3835.2013.11.001.
  Xiao Yan, Chen Lin, Xiao Guo, et al. Tests for anti-ram bollards based on truck collision[J]. Journal of Vibration and Shock, 2013, 32(11): 1-6. DOI:10.3969/j.issn.1000-3835.2013.11.001.(in Chinese)
[8] Liu C L, Li G Q, Siew K P, et al. Effects of boundary conditions on the design of anti-ram bollards[J]. Transactions of Tianjin University, 2008, 14(5): 384-386.
[9] Lan S R, Crawford J E, Xin X D. Development of shallow footing anti-ram bollard system through modeling and testing[J]. Transactions of Tianjin University, 2006, 12(S1): 46-50.
[10] Krishna P B. Protective bollard design for high speed impact energy absorption[D]. Wichita,Kansas,USA: Wichita State University, 2006.
[11] British Standards Institution. PAS 68:2007 specification for vehicle security barriers[S]. London: British Standards Institution, 2007.
[12] 李晓昭, 罗国煜, 龚洪祥, 等. 土体工程地质层组的划分[J]. 岩土力学, 2004, 25(5):759-763. DOI:10.3969/j.issn.1000-7598.2004.05.018.
  Li Xiaozhao, Luo Guoyu, Gong Hongxiang, et al. The division of engineering geological strata groups of soil mass[J]. Rock and Soil Mechanics, 2004, 25(5):759-763. DOI:10.3969/j.issn.1000-7598.2004.05.018.(in Chinese)
[13] 王震, 李国强, 陈素文, 等. 车辆冲击荷载下防撞杆的简化设计方法研究[J]. 建筑钢结构进展, 2013, 15(2):44-51. DOI:10.3969/j.issn.1671-9379.2013.02.008.
  Wang Zhen, Li Guoqiang, Chen Suwen, et al. Research for the simplified design method of anti-ram bollards subject to vehicle impact load[J]. Progress in Steel Building Structures, 2013, 15(2):44-51. DOI:10.3969/j.issn.1671-9379.2013.02.008.(in Chinese)
[14] Montgomery D C. Design and analysis of experiments[M]. 7th ed. New York:John Wiley & Sons, 2008:592-596.

备注/Memo

备注/Memo:
收稿日期: 2015-07-26.
作者简介: 曹轲(1988—),男,博士生;李国强(联系人),男,博士,教授,博士生导师,gqli@tongji.edu.cn.
基金项目: 国家自然科学基金重大国际合作研究资助项目(51120185001)、“十二五”国家科技支撑计划资助项目(2012BAJ13B02).
引用本文: 曹轲,李国强,陈素文,等.K4级可自动升降式防撞柱系统性能的数值分析[J].东南大学学报(自然科学版),2016,46(2):353-359. DOI:10.3969/j.issn.1001-0505.2016.02.020.
更新日期/Last Update: 2016-03-20