[1]楼文娟,王嘉伟,卢明,等.运动雷暴冲击风下输电线风载计算参数[J].东南大学学报(自然科学版),2016,46(2):371-378.[doi:10.3969/j.issn.1001-0505.2016.02.023]
 Lou Wenjuan,Wang Jiawei,Lu Ming,et al.Wind load calculation parameter of transmission line in moving thunderstorm downburst[J].Journal of Southeast University (Natural Science Edition),2016,46(2):371-378.[doi:10.3969/j.issn.1001-0505.2016.02.023]
点击复制

运动雷暴冲击风下输电线风载计算参数()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第2期
页码:
371-378
栏目:
电气工程
出版日期:
2016-03-20

文章信息/Info

Title:
Wind load calculation parameter of transmission line in moving thunderstorm downburst
作者:
楼文娟1王嘉伟1卢明2杨晓辉2吕中宾2
1浙江大学建筑工程学院, 杭州 310058; 2国网河南省电力公司电力科学研究院, 郑州 450052
Author(s):
Lou Wenjuan1 Wang Jiawei1 Lu Ming2 Yang Xiaohui2 Lü Zhongbin2
1College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2Electric Power Research Institute of State Grid Henan Electric Power Company, Zhengzhou 450052, China
关键词:
运动雷暴冲击风 输电线 风载计算参数 风压高度变化系数
Keywords:
moving thunderstorm downburst transmission line wind load calculation parameters wind pressure height coefficient
分类号:
TM726
DOI:
10.3969/j.issn.1001-0505.2016.02.023
摘要:
基于雷暴冲击风场风速剖面的经验函数,结合矢量合成法和谐波叠加法,构建了风场参数可变的瞬时运动雷暴冲击风场的计算方法.运动雷暴冲击风为短时强风,采用10 min平均风速无法准确地反映风场的时变特征,因而提出了平均时距较短的3 s阵风风速来表达冲击风场的设计风速.从输电线风载计算参数的实际表征意义出发,对10 m高度的3 s阵风风速、风压高度变化系数、风压不均匀系数、风荷载调整系数与冲击风风场参数的对应关系开展了全面的研究.结果表明,冲击风射流直径对风高系数的影响较大,风压不均匀系数和风荷载调整系数则主要受线路所在高度的湍流度支配,其中前者还与线路的档距有关.在此基础上,采用最小二乘法对风高系数和风压不均匀系数的经验公式进行拟合,给出风荷载调整系数的推荐取值,得到了基于3 s阵风风速的输电导线风荷载的完整表达式,并与中、美规范中常规边界层风场和冲击风场下的输电线风荷载进行对比,结果显示,近地面范围内,前者的计算值要高于后者.
Abstract:
Based on the empirical function of the wind velocity profile of thunderstorm downburst, a calculation method for the transient wind field of moving downburst with variable parameters is presented by combining the vector summation method and the harmonic superposition method. Due to the downburst’s short duration, the 10 min mean wind speed can not accurately reflect the wind field’s time-varying characteristic. Herein, the 3 s gust wind speed is adopted. According to the practical representation meanings of the transmission line’s wind load calculation parameters, including the 3-sec gust wind speed at 10 m, wind pressure height coefficient, wind pressure uneven factor, and wind load adjustment factor, the relationships between these parameters and the wind field parameters were comprehensively studied. The results reveal that, the wind pressure height coefficient is greatly affected by the jet diameter of downburst, while the wind pressure uneven factor and the wind load adjustment factor are dominated by the turbulence intensity at the conductor span’s calculation height, and the former is also related to the line’s span. Then, the least square method is used to fit the empirical formulas for the wind pressure height coefficient and the wind pressure uneven factor, and the recommended values of the wind load adjustment factor are given. Accordingly, the wind load of the transmission line with the 3 s gust wind speed is fully expressed, and compared with the values of those under atmosphere boundary layer and downburst wind field in both Chinese and American standards. The comparison shows that the former results are larger than the latter in the height range close to the ground.

参考文献/References:

[1] 卢明. 输电线路运行典型故障分析[M]. 北京: 中国电力出版社, 2014:140-143.
[2] 杨风利, 张宏杰, 杨靖波,等. 下击暴流作用下输电铁塔荷载取值及承载性能分析[J]. 中国电机工程学报, 2014, 34(24): 4179-4186. DOI:10.13334/j.0258-8013.pcsee.2014.24.023.
  Yang Fengli, Zhang Hongjie, Yang Jingbo, et al. Bearing capacity analysis and load values of transmission towers under thunderstorm downburst[J]. Proceedings of CSEE, 2014, 34(24):4179-4186. DOI:10.13334/j.0258-8013.pcsee.2014.24.023.(in Chinese)
[3] 胡毅. 500 kV输电线路风偏跳闸的分析研究[J]. 高电压技术, 2004, 30(8): 9-10. DOI:10.3969/j.issn.1003-6520.2004.08.004.
  Hu Yi. Study on trip caused by windage yaw of 500 kV transmission line[J]. High Voltage Engineering, 2004, 30(8): 9-10. DOI:10.3969/j.issn.1003-6520.2004.08.004.(in Chinese)
[4] 谢强, 张勇, 李杰. 华东电网 500 kV 任上5237线飑线风致倒塔事故调查分析[J]. 电网技术, 2006, 30(10): 59-63,89.
  Xie Qiang, Zhang Yong, Li Jie. Investigation on tower collapses of 500 kV Renshang 5237 transmission line caused by downburst [J]. Power System Technology, 2006, 30(10): 59-63,89.(in Chinese)
[5] Savory E, Parke G A R, Zeinoddini M, et al. Modelling of tornado and microburst-induced wind loading and failure of a lattice transmission tower[J]. Engineering Structures, 2001, 23(4): 365-375.
[6] Aboshosha H, El Damatty A. Downburst induced forces on the conductors of electric transmission lines and the corresponding vulnerability of towers failure[C]//CSCE 2013 General Conference. Montreal, Canada, GEN-164-1-GEN-164-8.
[7] Lin W E, Savory E, McIntyre R P, et al. The response of an overhead electrical power transmission line to two types of wind forcing[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012,100(1): 58-69. DOI:10.1016/j.jweia.2011.10.005.
[8] 王昕, 楼文娟, 李宏男,等. 雷暴冲击风作用下高耸输电塔风振响应[J]. 浙江大学学报(工学版), 2009, 43(8): 1520-1525.
  Wang Xin, Lou Wenjuan, Li Hongnan, et al. Wind-induced dynamic response of high-rise transmission tower under downburst wind load[J]. Journal of Zhejiang University(Engineering Science), 2009, 43(8):1520-1525.(in Chinese)
[9] Mara T G, Hong H P. Effect of wind direction on the response and capacity surface of a transmission tower[J]. Engineering Structures, 2013, 57: 493-501. DOI:10.1016/j.engstruct.2013.10.004.
[10] Letchford C W, Chay M T. Pressure distributions on a cube in a simulated thunderstorm downburst. Part B: Moving downburst observations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(7): 733-753.
[11] Li C, Li Q S,Xiao Y Q, et al. A revised empirical model and CFD simulations for 3D axisymmetric steady-state flows of downbursts and impinging jets[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 102: 48-60. DOI:10.1016/j.jweia.2011.12.004.
[12] Holmes J D, Oliver S E. An empirical model of a downburst [J]. Engineering Structures, 2000, 22(9): 1167-1172.
[13] Chen L, Letchford C W. A deterministic-stochastic hybrid model of downbursts and its impact on a cantilevered structure [J]. Engineering Structures, 2004, 26(5):619-629.
[14] Holmes J D. Modelling of extreme thunderstorm winds for wind loading of structures and risk assessment[C]//Proceeding of the Tenth International Conference on Wind Engineering. Rotterdam, Holland, 1999:1409-1416.
[15] Chay M T, Albermani F, Hawes H. Wind loads on transmission line structures in simulated downbursts[C]//First World Congress on Asset Management. Gold Coas, Australza, 2006.
[16] Hjelmfelt M R. Structure and life cycle of microburst outflows observed in Colorado[J]. Journal of Applied Meteorology, 1988, 27(8): 900-927.
[17] 陈勇, 崔碧琪, 彭志伟,等. 球壳型屋盖在冲击风作用下的抗风设计参数及CFD分析[J]. 空气动力学学报, 2012, 30(4): 456-463. DOI:10.3969/j.issn.0258-1825.2012.04.006.
  Chen Yong, Cui Biqi, Peng Zhiwei, et al. Wind-resistant design parameters and CFD analysis of spherical roof subjected to thunderstorm downbursts[J]. Acta Aerodynamic Sinica, 2012, 30(4):456-463. DOI:10.3969/j.issn.0258-1825.2012.04.006.(in Chinese)
[18] Mason M S, Wood G S, Fletcher D F. Influence of tilt and surface roughness on the outflow wind field of an impinging jet[J]. Wind and Structures, 2009, 12(3):179-204.
[19] Wood G S, Kwok K C S, Motterarn N A, et al. Physical and numerical modelling of thunderstorm damburst [J]. Journal of Wind Engineering and Inolustrial Aerodynamics, 2001, 89(6): 535-552.
[20] Vicroy D. Assessment of microburst models for downdraft estimation [J]. Journal of Aircraft, 1992, 29(6): 1043-1048.
[21] 中国电力企业联合会. GB50545—2010 110 kV~750 kV架空输电线路设计规范[S]. 北京: 中国计划出版社, 2010.
[22] 刘小会, 严波, 林雪松,等.500 kV超高压输电线路风偏数值模拟研究[J]. 工程力学, 2009, 26(1): 244-249.
  Liu Xiaohui, Yan Bo, Lin Xuesong, et al. Numerical simulation of windage yaw of 500 kV UHV transmission lines[J]. Engineering Mechanics, 2009,26(1):244-249.(in Chinese)
[23] Shehata A Y, El Damatty A A, Savory E. Finite element modeling of transmission line under downburst wind loading[J]. Finite Elements in Analysis and Design, 2005, 42(1): 71-89. DOI:10.1016/j.finel.2005.05.005.
[24] American Society of Civil Engineers. Guidelines for electrical transmission line structural loading [S]. 3rd ed. New York, USA:ASCE, 2009.

备注/Memo

备注/Memo:
收稿日期: 2015-08-10.
作者简介: 楼文娟(1963—),女,博士,教授,louwj@zju.edu.cn.
基金项目: 国家自然科学基金面上资助项目(51378468).
引用本文: 楼文娟,王嘉伟,卢明,等:运动雷暴冲击风下输电线风载计算参数[J].东南大学学报(自然科学版),2016,46(2):371-378. DOI:10.3969/j.issn.1001-0505.2016.02.023.
更新日期/Last Update: 2016-03-20