# [1]楼文娟,王嘉伟,卢明,等.运动雷暴冲击风下输电线风载计算参数[J].东南大学学报(自然科学版),2016,46(2):371-378.[doi:10.3969/j.issn.1001-0505.2016.02.023] 　Lou Wenjuan,Wang Jiawei,Lu Ming,et al.Wind load calculation parameter of transmission line in moving thunderstorm downburst[J].Journal of Southeast University (Natural Science Edition),2016,46(2):371-378.[doi:10.3969/j.issn.1001-0505.2016.02.023] 点击复制 运动雷暴冲击风下输电线风载计算参数() 分享到： var jiathis_config = { data_track_clickback: true };

46

2016年第2期

371-378

2016-03-20

## 文章信息/Info

Title:
Wind load calculation parameter of transmission line in moving thunderstorm downburst

1浙江大学建筑工程学院, 杭州 310058; 2国网河南省电力公司电力科学研究院, 郑州 450052
Author(s):
1College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2Electric Power Research Institute of State Grid Henan Electric Power Company, Zhengzhou 450052, China

Keywords:

TM726
DOI:
10.3969/j.issn.1001-0505.2016.02.023

Abstract:
Based on the empirical function of the wind velocity profile of thunderstorm downburst, a calculation method for the transient wind field of moving downburst with variable parameters is presented by combining the vector summation method and the harmonic superposition method. Due to the downburst’s short duration, the 10 min mean wind speed can not accurately reflect the wind field’s time-varying characteristic. Herein, the 3 s gust wind speed is adopted. According to the practical representation meanings of the transmission line’s wind load calculation parameters, including the 3-sec gust wind speed at 10 m, wind pressure height coefficient, wind pressure uneven factor, and wind load adjustment factor, the relationships between these parameters and the wind field parameters were comprehensively studied. The results reveal that, the wind pressure height coefficient is greatly affected by the jet diameter of downburst, while the wind pressure uneven factor and the wind load adjustment factor are dominated by the turbulence intensity at the conductor span’s calculation height, and the former is also related to the line’s span. Then, the least square method is used to fit the empirical formulas for the wind pressure height coefficient and the wind pressure uneven factor, and the recommended values of the wind load adjustment factor are given. Accordingly, the wind load of the transmission line with the 3 s gust wind speed is fully expressed, and compared with the values of those under atmosphere boundary layer and downburst wind field in both Chinese and American standards. The comparison shows that the former results are larger than the latter in the height range close to the ground.

## 参考文献/References:

[1] 卢明. 输电线路运行典型故障分析[M]. 北京: 中国电力出版社, 2014:140-143.
[2] 杨风利, 张宏杰, 杨靖波,等. 下击暴流作用下输电铁塔荷载取值及承载性能分析[J]. 中国电机工程学报, 2014, 34(24): 4179-4186. DOI:10.13334/j.0258-8013.pcsee.2014.24.023.
Yang Fengli, Zhang Hongjie, Yang Jingbo, et al. Bearing capacity analysis and load values of transmission towers under thunderstorm downburst[J]. Proceedings of CSEE, 2014, 34(24):4179-4186. DOI:10.13334/j.0258-8013.pcsee.2014.24.023.(in Chinese)
[3] 胡毅. 500 kV输电线路风偏跳闸的分析研究[J]. 高电压技术, 2004, 30(8): 9-10. DOI:10.3969/j.issn.1003-6520.2004.08.004.
Hu Yi. Study on trip caused by windage yaw of 500 kV transmission line[J]. High Voltage Engineering, 2004, 30(8): 9-10. DOI:10.3969/j.issn.1003-6520.2004.08.004.(in Chinese)
[4] 谢强, 张勇, 李杰. 华东电网 500 kV 任上5237线飑线风致倒塔事故调查分析[J]. 电网技术, 2006, 30(10): 59-63,89.
Xie Qiang, Zhang Yong, Li Jie. Investigation on tower collapses of 500 kV Renshang 5237 transmission line caused by downburst [J]. Power System Technology, 2006, 30(10): 59-63,89.(in Chinese)
[5] Savory E, Parke G A R, Zeinoddini M, et al. Modelling of tornado and microburst-induced wind loading and failure of a lattice transmission tower[J]. Engineering Structures, 2001, 23(4): 365-375.
[6] Aboshosha H, El Damatty A. Downburst induced forces on the conductors of electric transmission lines and the corresponding vulnerability of towers failure[C]//CSCE 2013 General Conference. Montreal, Canada, GEN-164-1-GEN-164-8.
[7] Lin W E, Savory E, McIntyre R P, et al. The response of an overhead electrical power transmission line to two types of wind forcing[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012,100(1): 58-69. DOI:10.1016/j.jweia.2011.10.005.
[8] 王昕, 楼文娟, 李宏男,等. 雷暴冲击风作用下高耸输电塔风振响应[J]. 浙江大学学报(工学版), 2009, 43(8): 1520-1525.
Wang Xin, Lou Wenjuan, Li Hongnan, et al. Wind-induced dynamic response of high-rise transmission tower under downburst wind load[J]. Journal of Zhejiang University(Engineering Science), 2009, 43(8):1520-1525.(in Chinese)
[9] Mara T G, Hong H P. Effect of wind direction on the response and capacity surface of a transmission tower[J]. Engineering Structures, 2013, 57: 493-501. DOI:10.1016/j.engstruct.2013.10.004.
[10] Letchford C W, Chay M T. Pressure distributions on a cube in a simulated thunderstorm downburst. Part B: Moving downburst observations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(7): 733-753.
[11] Li C, Li Q S,Xiao Y Q, et al. A revised empirical model and CFD simulations for 3D axisymmetric steady-state flows of downbursts and impinging jets[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 102: 48-60. DOI:10.1016/j.jweia.2011.12.004.
[12] Holmes J D, Oliver S E. An empirical model of a downburst [J]. Engineering Structures, 2000, 22(9): 1167-1172.
[13] Chen L, Letchford C W. A deterministic-stochastic hybrid model of downbursts and its impact on a cantilevered structure [J]. Engineering Structures, 2004, 26(5):619-629.
[14] Holmes J D. Modelling of extreme thunderstorm winds for wind loading of structures and risk assessment[C]//Proceeding of the Tenth International Conference on Wind Engineering. Rotterdam, Holland, 1999:1409-1416.
[15] Chay M T, Albermani F, Hawes H. Wind loads on transmission line structures in simulated downbursts[C]//First World Congress on Asset Management. Gold Coas, Australza, 2006.
[16] Hjelmfelt M R. Structure and life cycle of microburst outflows observed in Colorado[J]. Journal of Applied Meteorology, 1988, 27(8): 900-927.
[17] 陈勇, 崔碧琪, 彭志伟,等. 球壳型屋盖在冲击风作用下的抗风设计参数及CFD分析[J]. 空气动力学学报, 2012, 30(4): 456-463. DOI:10.3969/j.issn.0258-1825.2012.04.006.
Chen Yong, Cui Biqi, Peng Zhiwei, et al. Wind-resistant design parameters and CFD analysis of spherical roof subjected to thunderstorm downbursts[J]. Acta Aerodynamic Sinica, 2012, 30(4):456-463. DOI:10.3969/j.issn.0258-1825.2012.04.006.(in Chinese)
[18] Mason M S, Wood G S, Fletcher D F. Influence of tilt and surface roughness on the outflow wind field of an impinging jet[J]. Wind and Structures, 2009, 12(3):179-204.
[19] Wood G S, Kwok K C S, Motterarn N A, et al. Physical and numerical modelling of thunderstorm damburst [J]. Journal of Wind Engineering and Inolustrial Aerodynamics, 2001, 89(6): 535-552.
[20] Vicroy D. Assessment of microburst models for downdraft estimation [J]. Journal of Aircraft, 1992, 29(6): 1043-1048.
[21] 中国电力企业联合会. GB50545—2010 110 kV~750 kV架空输电线路设计规范[S]. 北京: 中国计划出版社, 2010.
[22] 刘小会, 严波, 林雪松,等.500 kV超高压输电线路风偏数值模拟研究[J]. 工程力学, 2009, 26(1): 244-249.
Liu Xiaohui, Yan Bo, Lin Xuesong, et al. Numerical simulation of windage yaw of 500 kV UHV transmission lines[J]. Engineering Mechanics, 2009,26(1):244-249.(in Chinese)
[23] Shehata A Y, El Damatty A A, Savory E. Finite element modeling of transmission line under downburst wind loading[J]. Finite Elements in Analysis and Design, 2005, 42(1): 71-89. DOI:10.1016/j.finel.2005.05.005.
[24] American Society of Civil Engineers. Guidelines for electrical transmission line structural loading [S]. 3rd ed. New York, USA:ASCE, 2009.