# [1]李凌林,黄晓明,朱大勇,等.广义Kelvin模型在沥青路面中的应用[J].东南大学学报(自然科学版),2016,46(2):413-418.[doi:10.3969/j.issn.1001-0505.2016.02.029] 　Li Linglin,Huang Xiaoming,Zhu Dayong,et al.Application of generalized Kelvin model in asphalt pavement[J].Journal of Southeast University (Natural Science Edition),2016,46(2):413-418.[doi:10.3969/j.issn.1001-0505.2016.02.029] 点击复制 广义Kelvin模型在沥青路面中的应用() 分享到： var jiathis_config = { data_track_clickback: true };

46

2016年第2期

413-418

2016-03-20

## 文章信息/Info

Title:
Application of generalized Kelvin model in asphalt pavement

1合肥工业大学交通运输工程学院, 合肥230009; 2东南大学交通学院, 南京 210096; 3合肥工业大学土木与水利工程学院, 合肥230009
Author(s):
1School of Transportation Engineering, Hefei University of Technology, Hefei 230009, China
2School of Transportation, Southeast University, Nanjing 210096, China
3School of Civil Engineering, Hefei University of Te

Keywords:

U416.2
DOI:
10.3969/j.issn.1001-0505.2016.02.029

Abstract:
To obtain the solution of the generalized viscoelastic constitutive equation, the generalized Kelvin model is selected as the constitutive model of asphalt mixture and the mechanical responses of this model is analyzed. First, the relationship between the strain and the stress of the one-dimensional generalized Kelvin model of asphalt mixture under the cyclic uniaxial haversine load is deduced and a new method to obtain the material parameters under this condition is proposed. Then, the one-dimensional generalized Kelvin model is generalized to the three-dimensional spatial domain and the corresponding finite-difference algorithm is presented. Finally, the validity of the proposed three-dimensional generalized Kelvin model and the finite-difference algorithm is verified, and the feasibility of the generalized Kelvin model in asphalt pavement is analyzed. The results show that by using the proposed parameter acquisition method and the calculation and generalization of the constitutive model, the generalized Kelvin model can be applied in asphalt pavement. The generalized Kelvin model can be used correctively and effectively in the calculation of the viscoelastic response of the asphalt pavement.

## 参考文献/References:

[1] 邓学钧. 路基路面工程[M]. 北京: 人民交通出版社,2008: 2-4.
[2] Cai Yingchun, Pan Ernian, Sangghaleh Ali. Inverse calculation of elastic moduli in cross-anisotropic and layered pavements by system identification method[J]. Inverse Problems in Science and Engineering, 2014, 23(4): 718-735. DOI:10.1080/17415977.2014.933833.
[3] Barksdale R D. Laboratory evaluation of rutting in base course materials[C]//Proceedings of the third International Conference on the Structural Design of Asphalt Pavements. London, 1972: 161-174.
[4] Department of Transport in Florida. Flexible pavement design manual[EB/OL]. [2015-03-15]. http://www.dot.state.fl.us/rddesign/PM/pcs/FlexiblePavementManual.pdf.
[5] Bajpai S, Nataraj N, Pani A K, et al. Semidiscrete Galerkin method for equations of motion arising in Kelvin-Voigt model of viscoelastic fluid flow[J]. Numerical Methods for Partial Differential Equations, 2013, 29(3): 857-883.
[6] You Zhanping, Liu Yu, Dai Qingli. Three-dimensional microstructural-based discrete element viscoelastic modeling of creep compliance tests for asphalt mixtures[J]. J Mater Civ Eng, 2011, 23(1): 79-87. DOI:10.1061/(ASCE)MT.1943-5533.0000038.
[7] Vignali V, Mazzotta F, Sangiorgi C, et al. Rheological and 3D DEM characterization of potential rutting of cold bituminous mastics[J]. Construction and Building Materials, 2014, 73: 339-349. DOI:10.1016/j.conbuildmat.2014.09.051.
[8] Li Linglin, Huang Xiaoming, Han Ding, et al. Investigation of rutting behavior of asphalt pavement in long and steep section of mountainous highway with overloading[J]. Construction and Building Materials, 2015, 93: 635-643. DOI:10.1016/j.conbuildmat.2015.06.016.
[9] Ho Chun-Hsing, Romero Pedro. Alternative function to represent relaxation modulus of viscoelastic materials[J]. J Mater Civil Eng, 2012, 24(2): 152-158. DOI:10.1061/(ASCE)MT.1943-5533.0000378.
[10] 陈炳瑞, 冯夏庭. 黏弹塑性普适组合模型及其工程应用[J]. 岩石力学与工程学报, 2008, 27(5): 1028-1035.
Chen Bingrui, Feng Xiating. Universal viscoelastoplastic combination model and its engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1028-1035.(in Chinese)
[11] 张肖宁. 沥青与沥青混合料的黏弹性力学原理及应用[M]. 北京: 人民交通出版社, 2006: 129-130.

## 相似文献/References:

[1]张璠,陈荣生,倪富健.排水性沥青路面混合料的渗透性能试验测试技术[J].东南大学学报(自然科学版),2010,40(6):1288.[doi:10.3969/j.issn.1001-0505.2010.06.030]
Zhang Fan,Chen Rongsheng,Ni Fujian.Techniques of permeability testing for porous asphalt pavement mixture[J].Journal of Southeast University (Natural Science Edition),2010,40(2):1288.[doi:10.3969/j.issn.1001-0505.2010.06.030]
[2]李辉,黄晓明,张久鹏,等.基于连续变温的沥青路面车辙模拟分析[J].东南大学学报(自然科学版),2007,37(5):915.[doi:10.3969/j.issn.1001-0505.2007.05.035]
Li Hui,Huang Xiaoming,Zhang Jiupeng,et al.Simulation analysis on rutting of asphalt pavements considering consecutive temperature variation[J].Journal of Southeast University (Natural Science Edition),2007,37(2):915.[doi:10.3969/j.issn.1001-0505.2007.05.035]
[3]钟勇强,黄晓明,廖公云,等.融沉变形对柔性路面应力应变影响试验研究[J].东南大学学报(自然科学版),2011,41(1):181.[doi:10.3969/j.issn.1001-0505.2011.01.035]
Zhong Yongqiang,Huang Xiaoming,Liao Gongyun,et al.Influence of thawing settlement deformation on stress and strain in flexible pavement[J].Journal of Southeast University (Natural Science Edition),2011,41(2):181.[doi:10.3969/j.issn.1001-0505.2011.01.035]
[4]董元帅,唐伯明,刘清泉,等.基于弯沉盆参数的沥青路面动态弯沉综合修正系数[J].东南大学学报(自然科学版),2011,41(5):1081.[doi:10.3969/j.issn.1001-0505.2011.05.035]
Dong Yuanshuai,Tang Boming,Liu Qingquan,et al.Dynamic synthetic deflection correction factor of asphalt pavement based on deflection basin parameters[J].Journal of Southeast University (Natural Science Edition),2011,41(2):1081.[doi:10.3969/j.issn.1001-0505.2011.05.035]
[5]李汉光,高英,余文斌.沥青混合料压实特性及沥青路面碾压遍数确定[J].东南大学学报(自然科学版),2011,41(1):186.[doi:10.3969/j.issn.1001-0505.2011.01.036]
Li Hanguang,Gao Ying,Yu Wenbin.Compaction characteristics of hot mixed asphalt and number of roller passes[J].Journal of Southeast University (Natural Science Edition),2011,41(2):186.[doi:10.3969/j.issn.1001-0505.2011.01.036]
[6]张中琼,吴青柏,刘永智,等.青藏高原公路路面结构水热差异变化分析[J].东南大学学报(自然科学版),2015,45(5):975.[doi:10.3969/j.issn.1001-0505.2015.05.027]
Zhang Zhongqiong,Wu Qingbai,Liu Yongzhi,et al.Analysis on hydrothermal difference changes of highway pavement structure on the Qinghai-Tibet Plateau[J].Journal of Southeast University (Natural Science Edition),2015,45(2):975.[doi:10.3969/j.issn.1001-0505.2015.05.027]
[7]武书华,陈华鑫,张久鹏,等.半刚性基层沥青路面层间界面力学特性与黏结状态的试验研究[J].东南大学学报(自然科学版),2016,46(2):406.[doi:10.3969/j.issn.1001-0505.2016.02.028]
Wu Shuhua,Chen Huaxin,Zhang Jiupeng,et al.Experimental study on mechanical properties and bond condition at interlayer between asphalt surface and semi-rigid base[J].Journal of Southeast University (Natural Science Edition),2016,46(2):406.[doi:10.3969/j.issn.1001-0505.2016.02.028]
[8]王元元,何亮,孙璐.矿料分异处理对沥青混合料抗滑性能的影响[J].东南大学学报(自然科学版),2017,47(6):1216.[doi:10.3969/j.issn.1001-0505.2017.06.021]
Wang Yuanyuan,He Liang,Sun Lu.Effect of differentiation processing of mineral aggregate on asphalt pavement sliding resistance[J].Journal of Southeast University (Natural Science Edition),2017,47(2):1216.[doi:10.3969/j.issn.1001-0505.2017.06.021]
[9]臧国帅,孙立军,陈长.基于虚拟惰性点的土基模量反演方法[J].东南大学学报(自然科学版),2017,47(6):1227.[doi:10.3969/j.issn.1001-0505.2017.06.023]
Zang Guoshuai,Sun Lijun,Chen Zhang.Back-calculating method for subgrade modulus based on virtual inertial points[J].Journal of Southeast University (Natural Science Edition),2017,47(2):1227.[doi:10.3969/j.issn.1001-0505.2017.06.023]
[10]郑彬双,朱晟泽,程永振,等.基于轮胎滑水模型的轮胎-沥青路面附着特性影响因素分析[J].东南大学学报(自然科学版),2018,48(4):719.[doi:10.3969/j.issn.1001-0505.2018.04.019]
Zheng Binshuang,Zhu Shengze,Cheng Yongzhen,et al.Analysis on influence factors of adhesion characteristic of tire-asphalt pavement based on tire hydroplaning model[J].Journal of Southeast University (Natural Science Edition),2018,48(2):719.[doi:10.3969/j.issn.1001-0505.2018.04.019]