[1]吴凯,徐玲琳,施惠生,等.集料含量对掺矿物掺合料水泥基材料抗硫酸盐侵蚀性能的影响[J].东南大学学报(自然科学版),2016,46(2):419-426.[doi:10.3969/j.issn.1001-0505.2016.02.030]
 Wu Kai,Xu Linglin,Shi Huisheng,et al.Effects of aggregate volume content on sulfate resistance properties of cement based materials with supplementary cementitious materials[J].Journal of Southeast University (Natural Science Edition),2016,46(2):419-426.[doi:10.3969/j.issn.1001-0505.2016.02.030]
点击复制

集料含量对掺矿物掺合料水泥基材料抗硫酸盐侵蚀性能的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第2期
页码:
419-426
栏目:
化学化工
出版日期:
2016-03-20

文章信息/Info

Title:
Effects of aggregate volume content on sulfate resistance properties of cement based materials with supplementary cementitious materials
作者:
吴凯1徐玲琳1施惠生1高云2
1同济大学先进土木工程材料教育部重点实验室, 上海 201804; 2东南大学江苏省土木工程材料重点实验室, 南京 211189
Author(s):
Wu Kai1 Xu Linglin1 Shi Huisheng1 Gao Yun2
1Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China
2Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China
关键词:
集料 矿物掺合料 硫酸钠 损伤破坏 微观结构
Keywords:
aggregate supplementary cementitious materials sodium sulfate degradation microstructure
分类号:
TQ172
DOI:
10.3969/j.issn.1001-0505.2016.02.030
摘要:
对不同集料体积掺量及掺合料配制的水泥基材料在室温、Na2SO4溶液浓度为5和50 g/L时的损伤破坏过程进行分析,并采用压汞法、扫描电镜-背散射电子图像分析和能谱扫描等方法得到相应水泥基材料的微观结构,研究了矿物掺合料和集料含量对水泥基材料抗硫酸盐侵蚀性能的影响机理.结果表明:单掺石灰石粉造成的硬化浆体孔隙率增加,不利于水泥基材料抗硫酸盐侵蚀;尽管大掺量矿粉使得体系孔隙率有所增加,但仍能有效改善浆体孔结构,使大于10 nm以上毛细孔明显减少,从而显著提高水泥基材料抗硫酸钠侵蚀能力;纯硅酸盐水泥或单掺石灰石粉体系中,经Na2SO4溶液腐蚀后,试件的损伤程度随集料体积掺量增大而有所加剧.集料对矿粉试件抗硫酸盐侵蚀性能的影响却并不明显;微观分析表明,主要膨胀性产物石膏倾向于分布在临近集料区域,这也是导致含集料试件加剧破坏的重要原因.
Abstract:
The degradation of cement-based materials with different aggregate volume contents and additions, was analyzed when they were exposed to 5 and 50 g/L Na2SO4 at 20 ℃. The microstructures of the corresponding cement-based materials was determined by mercury intrusion porosimetry(MIP), scanning electron microscopy backscattered electron(SEM-BSE)image, and energy dispersive spectrum(EDS)analysis. The influence mechanism of the mineral addition and the aggregate volume content on the sulfate resistance properties of cement-based materials was investigated. Results show that the addition of limestone powder(LP)causes an increase in the porosity of hardened paste, exerting an adverse effect on the sulfate-resistance ability of cement-based materials. The incorporation of high amount of slag increases the total porosity, but refines the slurry pore structure from coarse pore to finer one(>10 nm). Moreover, the addition of slag strengthens the sulfate-resistance ability of cement-based materials significantly. After corrosion by Na2SO4, the degradation of cement-based materials prepared with pure Portland cement or Portland cement-limestone powder binary binders is more severe as the aggregate volume content increases. However, this negative effect caused by the aggregate is less remarkable in case of the slag blended system. From the BSE image and EDS analysis, the preferable deposition of gypsum in the region close to the aggregate is the main reason for the expanded degradation of specimens with a relative high amount of aggregate.

参考文献/References:

[1] 孙伟, 缪昌文. 现代混凝土理论与技术[M]. 北京: 科学出版社, 2012: 579-634.
[2] Mehta P K, Monteiro P J M. Concrete: Microstructure, properties, and materials [M]. 3rd ed. New York: McGraw-Hill, 2006: 159-168.
[3] 左晓宝, 孙伟. 硫酸盐侵蚀下的混凝土损伤破坏全过程[J]. 硅酸盐学报, 2009, 37(7): 1063-1067.
  Zuo Xiaobao, Sun Wei. Full process analysis of damage and failure of concrete subjected to external sulfate attack[J]. Journal of Chinese Ceramic Society, 2009, 37(7): 1063-1067.(in Chinese)
[4] 王复生, 孙瑞莲, 朱元娜. 大掺量矿渣水泥抗硫酸盐侵蚀性能测试方法研究[J]. 建筑材料学报, 2009, 12(4): 466-469. DOI:10.3969/j.issn.1007-9629.2009.04.019.
  Wang Fusheng, Sun Ruilian, Zhu Yuanna. Test method for resistance to sulfate attack of cement with high volume of slag[J]. Journal of Building Materials, 2009, 12(4): 466-469. DOI:10.3969/j.issn.1007-9629.2009.04.019.(in Chinese)
[5] Ogawa S, Nozaki T, Yamada K, et al. Improvement on sulfate resistance of blended cement with high alumina slag[J]. Cement and Concrete Research, 2012, 42(2): 244-251. DOI:10.1016/j.cemconres.2011.09.008.
[6] Brown P W, Hooton R D, Clark B A. The co-existence of thaumasite and ettringite in concrete exposed to magnesium sulfate, at room temperature and the influence of blast-furnace slag substitution on sulfate resistance[J]. Cement and Concrete Composites, 2003, 25(8): 939-945.
[7] 梁松, 莫海鸿, 陈尤雯, 等. 掺矿渣微粉砂浆和混凝土的抗硫酸盐侵蚀性能[J]. 华南理工大学学报(自然科学版), 2003, 31(5): 93-96.
  Liang Song, Mo Haihong, Chen Youwen, et al. Sulfate resistance of mortar and concrete with slag addition[J]. Journal of South China University of Technology(Natural Science Edition), 2003, 31(5): 93-96.(in Chinese)
[8] Menendez G, Bonavetti V, Irassar E F. Strength development of ternary blended cement with limestone filler and blast-furnace slag [J]. Cement and Concrete Composites, 2003, 25(1): 61-67.
[9] Mounanga P, Khokhar M I A, El Hachem R, et al. Improvement of the early-age reactivity of fly ash and blast furnace slag cementitious systems using limestone filler [J]. Materials and Structures, 2011, 44(2): 437-453. DOI:10.1617/s11527-010-9637-1.
[10] Carrasco M F, Menendez G, Bonavetti V, et al. Strength optimization of “tailor-made cement” with limestone filler and blast furnace slag [J]. Cement and Concrete Research, 2005, 35(7): 1324-1331. DOI:10.1016/j.cemconres.2004.09.023.
[11] 邓德华, 肖佳, 元强, 等. 石灰石粉对水泥基材料抗硫酸盐侵蚀性的影响及其机理[J]. 硅酸盐学报, 2006, 34(10): 1243-1248.
  Deng Dehua, Xiao Jia, Yuan Qiang, et al. Effect of limestone powder on the sulfate-resistance of materials based on cement and its mechanism[J]. Journal of Chinese Ceramic Society, 2006, 34(10): 1243-1248.(in Chinese)
[12] Lee S T, Hooton R D, Jung H S, et al. Effect of limestone filler on the deterioration of mortars and pastes exposed to sulfate solutions at ambient temperature [J]. Cement and Concrete Research, 2008, 38(1): 68-76. DOI:10.1016/j.cemconres.2007.08.003.
[13] 李华, 孙伟, 左晓宝. 矿物掺合料改善水泥基材料抗硫酸盐侵蚀性能的微观分析[J]. 硅酸盐学报, 2012, 40(8): 1119-1126.
  Li Hua, Sun Wei, Zuo Xiaobao. Effect of mineral admixtures on sulfate attack resistance of cement-based materials[J]. Journal of Chinese Ceramic Society, 2012, 40(8): 1119-1126.(in Chinese)
[14] Liu Z Q, de Schutter G, Deng D H, et al. Micro-analysis of the role of interfacial transition zone in “salt weathering” on concrete [J]. Construction and Building Materials, 2010, 24(11): 2052-2059.
[15] Wu K. Experimental study on the influence of ITZ on the durability of concrete made with different kinds of blended materials [D]. Gent,Belgium: Gent University, 2014.
[16] Lothenbach B, Le Saout G, Gallucci E, et al. Influence of limestone on the hydration of Portland cements [J]. Cement and Concrete Research, 2008, 38(6): 848-860. DOI:10.1016/j.cemconres.2008.01.002.
[17] Panesar D K, Francis J. Influence of limestone and slag on the pore structure of cement paste based on Mercury intrusion porosimetry and water vapour sorption measurements [J]. Construction and Building Materials, 2014, 52: 52-58. DOI:10.1016/j.conbuildmat.2013.11.022.
[18] Gonzalez M A, Irassar E F. Ettringite formation in low C3A Portland cement exposed to sodium sulfate solution [J]. Cement and Concrete Research, 1997, 27(7): 1061-1071.
[19] Bonakdar A, Mobasher B. Multi-parameter study of external sulfate attack in blended cement materials [J]. Construction and Building Materials, 2010, 24(1): 61-70. DOI:10.1016/j.conbuildmat.2009.08.009.
[20] Roziere E, Loukili A, El Hachem R, et al. Durability of concrete exposed to leaching and external sulphate attacks [J]. Cement and Concrete Research, 2009, 39(12): 1188-1198. DOI:10.1016/j.cemconres.2009.07.021.
[21] Schmidt T, Lothenbach B, Romer M, et al. Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements [J]. Cement and Concrete Research, 2009, 39(12): 1111-1121. DOI:10.1016/j.cemconres.2009.08.005.
[22] Zelic J, Krstulovic R, Tkalcec E, et al. Durability of the hydrated limestone-silica fume Portland cement mortars under sulphate attack [J]. Cement and Concrete Research, 1999, 29(6): 819-826.
[23] Gollop R S, Taylor H F W. Microstructural and microanalytical studies of sulfate attack Ⅳ: Reactions of a slag cement paste with sodium and magnesium sulfate solutions [J]. Cement and Concrete Research, 1996, 26(7): 1013-1028.
[24] Hoshino S, Yamada K, Hirao H. XRD/rietveld analysis of the hydration and strength development of slag and limestone blended cement [J]. Journal of Advanced Concrete Technology, 2006, 4(3): 357-367.
[25] El-Hachem R, Roziere E, Grondin F, et al. New procedure to investigate external sulphate attack on cementitious materials[J]. Cement and Concrete Composites, 2012, 34(3): 357-364. DOI:10.1016/j.cemconcomp.2011.11.010.
[26] Girardi F, Vaona W, di Maggio R. Resistance of different types of concretes to cyclic sulfuric acid and sodium sulfate attack[J]. Cement and Concrete Composites, 2010, 32(8): 595-602. DOI:10.1016/j.cemconcomp.2010.07.002.

相似文献/References:

[1]刘建忠,孙伟,缪昌文,等.矿物掺合料对低水胶比混凝土干缩和自收缩的影响[J].东南大学学报(自然科学版),2009,39(3):580.[doi:10.3969/j.issn.1001-0505.2009.03.030]
 Liu Jianzhong,Sun Wei,Miao Changwen,et al.Effect of mineral admixtures on drying and autogenous shrinkage of concrete with low water-to-binder ratio[J].Journal of Southeast University (Natural Science Edition),2009,39(2):580.[doi:10.3969/j.issn.1001-0505.2009.03.030]
[2]施锦杰,孙伟.氯离子电迁移下饱和Ca(OH)2中钢筋的锈蚀行为[J].东南大学学报(自然科学版),2010,40(6):1298.[doi:10.3969/j.issn.1001-0505.2010.06.032]
 Shi Jinjie,Sun Wei.Corrosion behavior of steel in saturated Ca(OH)2 solution under chloride ions migration[J].Journal of Southeast University (Natural Science Edition),2010,40(2):1298.[doi:10.3969/j.issn.1001-0505.2010.06.032]
[3]高鹏,余红发,文静,等.快速砂浆棒法检测矿物掺合料与Li2CO3对ASR抑制作用的适用性评价[J].东南大学学报(自然科学版),2018,48(2):357.[doi:10.3969/j.issn.1001-0505.2018.02.026]
 Gao Peng,Yu Hongfa,Wen Jing,et al.Evalution of using accelerated mortar-bars test to detect inhibition efficacy of supplementary cementitious materials and Li2CO3 on alkali-silica reaction[J].Journal of Southeast University (Natural Science Edition),2018,48(2):357.[doi:10.3969/j.issn.1001-0505.2018.02.026]

备注/Memo

备注/Memo:
收稿日期: 2015-09-07.
作者简介: 吴凯(1987—),男,博士,助理教授,wukai@tongji.edu.cn.
基金项目: 国家自然科学基金资助项目(51378390, 51402216)、中央高校基本科研业务费专项资金资助项目(2014KJ060)、硅酸盐建筑材料国家重点实验室开放基金资助项目(SYSJJ2016-01).
引用本文: 吴凯,徐玲琳,施惠生,等. 集料含量对掺矿物掺合料水泥基材料抗硫酸盐侵蚀性能的影响[J].东南大学学报(自然科学版),2016,46(2):419-426. DOI:10.3969/j.issn.1001-0505.2016.02.030.
更新日期/Last Update: 2016-03-20