[1]金宝丹,王淑莹,邢立群,等.单过硫酸氢钾复合盐对剩余污泥厌氧发酵的影响[J].东南大学学报(自然科学版),2016,46(2):434-443.[doi:10.3969/j.issn.1001-0505.2016.02.032]
 Jin Baodan,Wang Shuying,Xing Liqun,et al.Effect of potassium peroxymonosulfate on waste activated sludge anaerobic fermentation[J].Journal of Southeast University (Natural Science Edition),2016,46(2):434-443.[doi:10.3969/j.issn.1001-0505.2016.02.032]
点击复制

单过硫酸氢钾复合盐对剩余污泥厌氧发酵的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第2期
页码:
434-443
栏目:
环境科学与工程
出版日期:
2016-03-20

文章信息/Info

Title:
Effect of potassium peroxymonosulfate on waste activated sludge anaerobic fermentation
作者:
金宝丹王淑莹邢立群彭永臻
北京工业大学北京市水质科学与水环境恢复工程重点实验室, 北京100124
Author(s):
Jin Baodan Wang Shuying Xing Liqun Peng Yongzhen
Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
关键词:
污泥发酵 水解酸化 可挥发性脂肪酸 单过硫酸氢钾复合盐 污泥减量
Keywords:
waste activated sludge fermentation hydrolytic acidification short volatile fatty acids potassium peroxymonosulfate(PMS) sludge reduction
分类号:
X703
DOI:
10.3969/j.issn.1001-0505.2016.02.032
摘要:
为了研究单过硫酸氢钾复合盐(PMS)对剩余污泥厌氧发酵的影响,将不同剂量的PMS投加至剩余污泥厌氧发酵系统中,分析污泥溶液化率、污泥分解率、可挥发性脂肪酸(SCFAs)、蛋白质和多糖、水解酶、发酵污泥毛细吸水时间(CST)及可挥发性悬浮固体浓度(MVLSS)等指标.研究发现,在污泥中投入适量的PMS能够有效地促进污泥水解酸化,提高污泥减量率.结果表明,当PMS为0.04~0.08 mg/mg时污泥发酵性能最佳,水解酸化性能相近.当PMS大于0.08 mg/mg时,污泥发酵性能下降,且该条件下药剂消耗成本较高,不利于发酵系统运行.研究同时发现,PMS能够显著提高SCFAs中乙酸的比例,乙酸比例最高可达到75.55%,同时降低丙酸比例,丙酸比例最低可达到0.92%.
Abstract:
In order to investigate the effect of potassium peroxymonosulfate(PMS)on the waste activated sludge(WAS)anaerobic fermentation, the PMS of different dose was added into the fermentation systems. Different indicators, such as the WAS solubilization rate, disintegration degree rate, short chain fatty acids(SCFAs), protein, polysaccharide, hydrolase, capillary suction time(CST)of WAS and volatile suspended solid(MLVSS)concentration were analyzed in the anaerobic fermentation process. It is found that the appropriate PMS effectively enhances the WAS hydrolysis acidification function and sludge reduction. The results show that when the PMS is 0.04 to 0.08 mg/mg, the fermentation performance of WAS is the best and they have a similar hydrolytic acidification performance. However, the fermentation performance of WAS is reduced and the reagent cost is increased when the PMS is higher than 0.08 mg/mg. It is not beneficial to the fermentation system operation. At the same time, it is found that the PMS can significantly increase the proportion of acetic acid to the maximum of 75.55%, and decline the proportion of propionic acid to the minimum of 0.92% in SCFAs.

参考文献/References:

[1] Yan S, Miyanaga K, Xing X H,et al. Succession of bacterial community and enzymatic activities of activated sludge by heat-treatment for reduction of excess sludge[J]. Biochemical Engineering Journal, 2008, 39(3): 598-603. DOI:10.1016/j.bej.2007.12.002.
[2] Batstone D J, Keller J, Angelidaki I, et al. The IWA anaerobic digestion model No 1(ADM1)[J]. Water Sci Technol, 2002, 45(10): 65-73.
[3] Chen Y, Randall A A, McCue T. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid[J]. Water Research, 2004, 38(1): 27-36.DOI:10.1016/j.watres.2003.08.025.
[4] Feng L Y, Yan Y Y, Chen Y G. Kinetic analysis of waste activated sludge hydrolysis and short-chain fatty acids production at pH 10[J]. Journal of Environmental Sciences, 2009, 21(5): 589-594. DOI:10.1016/S1001-0742(08)62312-8.
[5] Yu G H, He P J, Shao L M, et al. Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment[J]. Water Res, 2008, 42(8/9): 1925-1934. DOI:10.1016/j.watres.2007.11.022.
[6] Pang L, Ni J, Tang X Y. Fast characterization of soluble organic intermediates and integrity of microbial cells in the process of alkaline anaerobic fermentation of waste activated sludge[J]. Biochemical Engineering Journal, 2014,86:49-56.
[7] Zhao J W, Wang D B, Li X M, et al. Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge[J]. Water Research, 2015, 78: 111-120. DOI:10.1016/j.watres.2015.04.012.
[8] Park N D, Helle S S, Thring R W. Combined alkaline and ultrasound pre-treatment of thickened pulp mill waste activated sludge for improved anaerobic digestion[J]. Biomass and Bioenergy, 2012,46: 750-756. DOI:10.1016/j.biombioe.2012.05.014.
[9] Lim J W, Wang J Y. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste[J]. Waste Manag, 2013, 33(4): 813-819. DOI:10.1016/j.wasman.2012.11.013.
[10] Sharma V K. Potassium ferrate(Ⅵ): An environmentally friendly oxidant[J]. Advances in Environmental Research, 2002, 6(2): 143-156. DOI:10.1016/S1093-0191(01)00119-8.
[11] 张跃华, 赵永勋. 过硫酸氢钾复合盐消毒作用实验研究[J]. 中国卫生检验杂志, 2005, 15(1):40-41.DOI:10.3969/j.issn.1004-8685.2005.01.017.
  Zhang Yuehua, Zhao Yongxun. Experimental observation on germicidal efficacy of potassium monopersulfate[J]. Chinese Journal of Health Laboratory Technology, 2005, 15(1):40-41. DOI:10.3969/j.issn.1004-8685.2005.01.017.(in Chinese)
[12] Clesceri L S, Greenberg A E, Eaton A D. Standard methods for the examination of water and wastewater[M]. Washington, DC,USA: American Public Health Association, 1998:1-5.
[13] Yuan H, Chen Y, Zhang H, et al. Improved bioproduction of short-chain fatty acids(SCFAs)from excess sludge under alkaline conditions[J]. Environ Sci Technol, 2006, 40(6): 2025-2029.
[14] Yuan Y, Wang S Y, Liu Y,et al. Long-term effect of pH on short-chain fatty acids accumulation and microbial community in sludge fermentation systems[J]. Bioresource Technology, 2015, 197:56-63. DOI:10.1016/j.biortech.2015.08.025.
[15] Jin B D, Wang S Y, Xing L Q, et al. Long term effect of alkali types on waste activated sludge hydrolytic acidification and microbial community at low temperature[J]. Bioresource Technology, 2016, 200:587-597. DOI:10.1016/j.biortech.2015.10.036.
[16] Goel R, Mino T, Satoh H, et al.Enzyme activities under anaerobic and aerobic conditions in activated sludge sequencing batch reactor[J]. Water Research, 1998, 32(7): 2081-2088.
[17] Mu H, Chen Y G. Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion[J]. Water Research, 2011, 45(17): 5612-5620. DOI:10.1016/j.watres.2011.08.022.
[18] Bougrier C, Carrère H, Delgenès J P. Solubilisation of waste-activated sludge by ultrasonic treatment[J].Chemical Engineering Journal, 2005, 106(2): 163-169. DOI:10.1016/j.cej.2004.11.013.
[19] Pletschke B I, Rose P D, Whiteley C G. The enzymology of sludge solubilisation utilising sulphate reducing systems:Identification and properties of ATP-sulphurylases[J]. Enzyme & Microbial Technology, 2002, 31(3):329-336.
[20] Li X, Peng Y, Ren N, et al. Effect of temperature on short chain fatty acids(SCFAs)accumulation and microbiological transformation in sludge alkaline fermentation with Ca(OH)2 adjustment[J]. Water Res, 2014, 61: 34-45. DOI:10.1016/j.watres.2014.03.030.
[21] Naddeo V, Belgiorno V, Landi M, et al. Effect of sonolysis on waste activated sludge solubilisation and anaerobic biodegradability[J]. Desalination, 2009, 249(2): 762-767. DOI:10.1016/j.desal.2009.02.061.
[22] 俞晓锋, 涂瀛, 刘萍, 等. 过氧化氢对白色念珠菌的超微结构及酸性磷酸酶的影响[J]. 消毒与灭菌,1987(4):183-186.
  Yu Xiaofeng,Tu Ying,Liu Ping,et al. Destructive effect of hydrogen peroxide on ultrastructure and acid phosphatase of candida albicans[J]. Chinese Journal of Disinfection, 1987(4):183-186.(in Chinese)
[23] Chu L, Yan S, Xing X H, et al. Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production[J]. Water Res, 2009, 43(7): 1811-1822.DOI:10.1016/j.watres.2009.02.012.
[24] Ye F X, Ji H Z, Ye Y F. Effect of potassium ferrate on disintegration of waste activated sludge(WAS)[J].Journal of Hazardous Materials, 2012,219-220: 164-168. DOI:10.1016/j.jhazmat.2012.03.070.
[25] Tanaka S, Kobayashi T, Kamiyama K, et al.Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge[J]. Water Science and Technology, 1997,35:209-215.
[26] Wang Z, Gao M, Wang Z, et al. Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor[J]. Chemosphere, 2013, 93(11): 2789-2795.DOI:10.1016/j.chemosphere.2013.09.038.
[27] Chen Y G, Jiang S, Yuan H Y, et al. Hydrolysis and acidification of waste activated sludge at different pHs[J]. Water Research, 2007, 41(3): 683-689. DOI:10.1016/j.watres.2006.07.030.
[28] Sutherland I W. Biofilm exopolysaccharides: A strong and sticky framework[J]. Microbiology, 2001, 147(Pt 1): 3-9. DOI:10.1099/00221287-147-1-3.
[29] Yin B, Liu H B, Wang Y Y, et al.Improving volatile fatty acids production by exploiting the residual substrates in post-fermented sludge: Protease catalysis of refractoryprotein[J]. Bioresource Technology, 2016,203:124-131.
[30] Chen Y G, Liu K, Su Y L, et al. Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH[J]. Bioresource Technology, 2013, 140: 97-102. DOI:10.1016/j.biortech.2013.04.075.
[31] Wu C, Jin L Y, Zhang P Y, et al. Effects of potassium ferrate oxidation on sludgedisintegration, dewaterability and anaerobic biodegradation[J]. International Biodeterioration & Biodegradation, 2015, 102: 137-142. DOI:10.1016/j.ibiod.2015.01.002.
[32] Chen Y, Cheng J J, Creamer K S. Inhibition of anaerobic digestion process: A review[J].Bioresource Technology, 2008, 99(10): 4044-4064. DOI:10.1016/j.biortech.2007.01.057.
[33] Su G Q, Huo M X, Yuan Z G, et al. Hydrolysis, acidification and dewaterability of waste activated sludge under alkaline conditions: Combined effects of NaOH and Ca(OH)2[J]. Bioresource Technology, 2013, 136: 237-243. DOI:10.1016/j.biortech.2013.03.024.
[34] Zhang P, Chen Y G, Zhou Q. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH[J]. Water Research, 2009, 43(15): 3735-3742. DOI:10.1016/j.watres.2009.05.036.
[35] Huang X F, Shen C M, Liu J, et al.Improved volatile fatty acid production during waste activated sludge anaerobic fermentation by different bio-surfactants[J]. Chemical Engineering Journal, 2015, 264:280-290. DOI:10.1016/j.cej.2014.11.078.
[36] Yu G H, He P J, Shao L M, et al. Enzyme activities in activated sludge flocs[J]. Appl Microbiol Biotechnol, 2007, 77(3): 605-612. DOI:10.1007/s00253-007-1204-5.
[37] Cadoret A, Conrad A, Block J C. Availability of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludges[J]. Enzyme and Microbial Technology, 2002, 31(1): 179-186.
[38] Banister S S, Pitman A R, Pretorius W A. The solubilisation of N and P during primary sludge acid fermentation and precipitation of the resultant P[J]. Water Sa, 1998, 24: 337-342.
[39] Jia Q Q, Wang H, Wang X J. Dynamic synthesis of polyhydroxyalkanoates by bacterial consortium from simulated excess sludge fermentation liquid[J]. Bioresource Technology, 2013, 140: 328-336. DOI:10.1016/j.biortech.2013.04.105.
[40] Brioukhanov A L, Netrusov A I. Aerotolerance of strictly anaerobic microorganisms and factors of defense against oxidative stress: a review[J]. Appl Biochem Microbiol, 2007, 43(6): 567-582.DOI:10.1134/S0003683807060014.
[41] 袁悦, 彭永臻, 金宝丹, 等. 氢氧化镁对剩余污泥碱性发酵及脱水性能的影响[J]. 中国环境科学,2014, 34(7):1790-1796.
  Yuan Yue, Peng Yongzhen, Jin Baodan, et al. Fermentation and dewaterability of waste activated sludge under alkaline conditions:effect of Mg(OH)2[J]. China Environmental Science, 2014, 34(7):1790-1796.(in Chinese)
[42] 苏高强, 彭永臻, 汪传新, 等. 污泥类型对污泥碱性发酵的影响[J]. 化工学报, 2011, 62(12):3492-3497.DOI:10.3969/j.issn.0438-1157.2011.12.028.
  Su Gaoqiang, Peng Yongzhen, Wang Chuanxin, et al. Effect of sludge type on sludge alkaline fermentation[J]. Ciesc Journal, 2011, 62(12):3492-3497. DOI:10.3969/j.issn.0438-1157.2011.12.028.(in Chinese)
[43] Visser A, Nozhevnikova A N, Lettinga G. Sulphide inhibition of methanogenic activity at various pH levels at 55 ℃[J]. Journal of Chemical Technology & Biotechnology, 1993, 57: 9-13.
[44] Dytczak M A, Londry K L, Siegrist H, et al. Ozonation reduces sludge production and improves denitrification[J]. Water Res, 2007, 41(3): 543-550. DOI:10.1016/j.watres.2006.11.009.
[45] Neis U, Nickel K, Lundén A. Improving anaerobic and aerobic degradation by ultrasonic disintegration of biomass[J]. Journal of Environmental Science and Health Part A, 2008(13): 1541-1545. DOI:10.1080/10934520802293701.
[46] 金宝丹, 王淑莹, 邢立群, 等. 盐度对熟化发酵污泥再发酵产酸及脱水性的影响[J]. 四川大学学报(工程科学版), 2015, 47(4):198-204. DOI:10.15961/j.jsuese.2015.04.030.
  Jin Baodan, Wang Shuying, Xing Liqun, et al. Effect of salinity on the slaking fermentation sludge fermenting again produce acid and hehydration property[J]. Journal of Sichuan University(Engineering Science Edition), 2015, 47(4):198-204. DOI:10.15961/j.jsuese.2015.04.030.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2015-09-10.
作者简介: 金宝丹(1985—),女,博士生;王淑莹(联系人),女,教授,博士生导师, wsy@bjut.edu.cn.
基金项目: 国家水体污染控制与治理科技重大专项资助项目(2015ZX07218001)、第十三届研究生科技基金资助项目(ykj-2014-10608).
引用本文: 金宝丹,王淑莹,邢立群,等.单过硫酸氢钾复合盐对剩余污泥厌氧发酵的影响[J].东南大学学报(自然科学版),2016,46(2):434-443. DOI:10.3969/j.issn.1001-0505.2016.02.032.
更新日期/Last Update: 2016-03-20