[1]邓长根,张晨辉,周江.焊接H形截面钢柱板组弹塑性相关屈曲和容许宽厚比[J].东南大学学报(自然科学版),2016,46(3):523-531.[doi:10.3969/j.issn.1001-0505.2016.03.012]
 Deng Changgen,Zhang Chenhui,Zhou Jiang.Elasto-plastic interactive buckling and allowable width-thickness ratios of plate assembly in welded H-section steel columns[J].Journal of Southeast University (Natural Science Edition),2016,46(3):523-531.[doi:10.3969/j.issn.1001-0505.2016.03.012]
点击复制

焊接H形截面钢柱板组弹塑性相关屈曲和容许宽厚比()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第3期
页码:
523-531
栏目:
土木工程
出版日期:
2016-05-20

文章信息/Info

Title:
Elasto-plastic interactive buckling and allowable width-thickness ratios of plate assembly in welded H-section steel columns
作者:
邓长根张晨辉周江
同济大学土木工程学院, 上海 200092
Author(s):
Deng Changgen Zhang Chenhui Zhou Jiang
College of Civil Engineering, Tongji University, Shanghai 200092, China
关键词:
焊接H形截面 局部相关屈曲 弹塑性 极限弯矩比 宽厚比限值
Keywords:
welded H-section local interactive buckling elasto-plasticity ultimate moment ratio width-thickness ratio limitation
分类号:
TU391
DOI:
10.3969/j.issn.1001-0505.2016.03.012
摘要:
建立了竖向轴压力和单调水平荷载作用下焊接H形截面悬臂钢柱板组弹塑性相关屈曲的有限元分析模型,通过改变轴压比、翼缘宽厚比、腹板高厚比及翼缘-腹板厚度比等参数,对非特厚实截面钢柱进行几何非线性和材料非线性有限元分析.然后,基于分析结果,利用最小相对误差拟合法得到极限弯矩比的实用计算公式.最后,基于整体-局部等稳原则导出板组容许宽厚比相关曲线方程,并通过算例对容许宽厚比相关曲线与钢结构设计规范的翼缘和腹板宽厚比限值曲线进行比较.结果表明:构件长细比较小时,规范规定的翼缘和腹板宽厚比限值可能超出容许宽厚比相关曲线限定的范围;翼缘宽厚比与腹板高厚比限值相关,并且两者均随轴压比、翼缘-腹板厚度比、构件长细比、塑性发展系数的变化而变化.
Abstract:
The finite element analysis model was built for the elasto-plastic interactive buckling of plate assembly in a welded H-section cantilevered steel column subjected to the vertical axial compressive force and the horizontal monotonic shear force. A series of geometrical and material nonlinear finite element analyses for steel columns with non-plastic sections were carried out by varying the axial compression ratio, the flange width-thickness ratio, the web height-thickness ratio, and the flange-web thickness ratio. Then, the practical formula of the ultimate moment ratio was obtained by the minimum relative error fitting algorithm based on the analysis results. Finally, the equation for the allowable width-thickness ratio correlation curves of plate assembly was derived on the basis of the principle of simultaneous overall and local interactive buckling. And the allowable width-thickness ratio correlation curves were compared with the flange and web width-thickness ratio limitation curves according to Code for Design of Steel Structures. The results show that the width-thickness ratio limitations of the flange and the web according to the code may exceed the regions enclosed by the allowable width-thickness ratio correlation curves when the slenderness ratio is small. The flange width-thickness ratio is relative to the web height-thickness ratio limitations, and both of them vary with the changes of the axial compression ratio, the flange-web thickness ratio, the member slenderness ratio, and the plasticity development coefficient.

参考文献/References:

[1] 中华人民共和国建设部.GB50017—2003钢结构设计规范[S].北京:中国计划出版社,2003.
[2] 《钢结构设计规范》国家标准管理组.GB50017—201X钢结构设计规范(报批稿)[S].(待出版)
[3] European Committee for Standardization. EN1993-1-1 Eurocode 3: Design of steel structures, part 1.1: General rules and rules for buildings[S]. Brussels: European Committee for Standardization, 2005.
[4] Chen Y Y, Cheng X, Nethercot D A. An overview study on cross-section classification of steel H-sections [J]. Journal of Constructional Steel Research, 2013, 80: 386-393. DOI:10.1016/j.jcsr.2012.10.006.
[5] 陈绍蕃.冷弯型钢板件相关屈曲和极限承载力[J].建筑钢结构进展,2002,4(1):3-6. DOI:10.3969/j.issn.1671-9379.2002.01.001.
  Chen Shaofan. Plate interactive buckling and ultimatecapacity of cold-formed sections[J]. Progress in Steel Building Structures, 2002, 4(1): 3-6. DOI:10.3969/j.issn.1671-9379.2002.01.001.(in Chinese).
[6] Seif M, Schafer B W. Local buckling of structural steel shapes [J]. Journal of Constructional Steel Research, 2010, 66(10): 1232-1247.
[7] Shokouhian M, Shi Y J. Classification of I-section flexural members based on member ductility [J]. Journal of Constructional Steel Research, 2014, 95: 198-210. DOI:10.1016/j.jcsr.2013.12.004.
[8] Kato B. Rotation capacity of H-section members as determined by local buckling [J]. Journal of Constructional Steel Research, 1989, 13(2/3): 95-109.
[9] Hasegawa R, Ikarashi K. Strength and plastic deformation capacity of H-shaped beam-columns[C]//IABSE Symposium Report, IABSE Madrid Symposium: Engineering for Progress, Nature and People. Zurich, Switzerland:International Association for Bridge and Structural Engineering, 2014, 102: 579-586. DOI:10.2749/222137814814028223.
[10] 日本建築学会.鋼構造限界状態設計指針[S].東京:日本建築学会,1990.
[11] 日本建築学会.鋼構造限界状態設計指針[S].東京:日本建築学会,2010.
[12] 程欣,陈以一.考虑板件相关作用的H形截面压弯钢构件抗弯承载力[J].工程力学,2015,32(3):41-49.
  Cheng Xin, Chen Yiyi. Moment resistance of H-section steel beam-columns considering the interactive effect of plane elements [J]. Engineering Mechanics, 2015, 32(3): 41-49.(in Chinese)
[13] 中华人民共和国建设部.GB50205—2001钢结构工程施工质量验收规范[S].北京:中国计划出版社,2001.
[14] 周江.焊接H型截面钢构件弹塑性相关屈曲试验与有限元分析[D].上海:同济大学土木工程学院,2012.

备注/Memo

备注/Memo:
收稿日期: 2015-07-28.
作者简介: 邓长根(1962—),男,博士,教授,博士生导师,dengcg@tongji.edu.cn.
基金项目: 国家自然科学基金重点资助项目(51038008)、国家自然科学基金资助项目(51478330).
引用本文: 邓长根,张晨辉,周江.焊接H形截面钢柱板组弹塑性相关屈曲和容许宽厚比[J].东南大学学报(自然科学版),2016,46(3):523-531. DOI:10.3969/j.issn.1001-0505.2016.03.012.
更新日期/Last Update: 2016-05-20