[1]郭丽萍,张文潇,孙伟,等.隧道用纤维素纤维混凝土在弯拉荷载作用下的耐久性[J].东南大学学报(自然科学版),2016,46(3):612-618.[doi:10.3969/j.issn.1001-0505.2016.03.026]
 Guo Liping,Zhang Wenxiao,Sun Wei,et al.Durability of cellulose fiber reinforced concrete under bending load in tunnel engineering[J].Journal of Southeast University (Natural Science Edition),2016,46(3):612-618.[doi:10.3969/j.issn.1001-0505.2016.03.026]
点击复制

隧道用纤维素纤维混凝土在弯拉荷载作用下的耐久性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第3期
页码:
612-618
栏目:
材料科学与工程
出版日期:
2016-05-20

文章信息/Info

Title:
Durability of cellulose fiber reinforced concrete under bending load in tunnel engineering
作者:
郭丽萍12张文潇13孙伟12谌正凯1丁聪1
1东南大学材料科学与工程学院, 南京 211189; 2东南大学江苏省先进土木工程材料协同创新中心, 南京 211189; 3南京水利科学研究院水文水资源与水利工程科学国家重点实验室, 南京 210029
Author(s):
Guo Liping12 Zhang Wenxiao13 Sun Wei12 Chen Zhengkai1 Ding Cong1
1School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2Collaborative Innovation Center for Advanced Civil Engineering Materials of Jiangsu Province, Southeast University, Nanjing 211189, China
3State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
关键词:
隧道混凝土 纤维素纤维 耐久性 微观机理
Keywords:
tunnel concrete cellulosic fiber durability micro-mechanism
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2016.03.026
摘要:
针对隧道衬砌结构混凝土在服役过程中承受弯拉荷载的实际情况,研究了纤维素纤维混凝土分别在加载40%四点抗弯强度和不加荷载条件下的抗氯离子渗透性、抗碳化、抗冻融及抗硫酸盐侵蚀等耐久性能及其微观机理,并与未加载的普通素混凝土耐久性能进行了对比分析.结果表明:由于纤维素纤维具有独特的空腔结构和亲水性,可在硬化混凝土基体中乱向均匀分布并显著优化混凝土的孔隙结构,使得未加载的纤维素纤维混凝土与基准素混凝土相比,耐久性显著提高,电通量仅降低25%,不同龄期碳化深度减小0.9~2.5 mm.与未加载的纤维素纤维混凝土相比,加载后的纤维素纤维混凝土耐久性略有削弱,电通量增加了17%,不同龄期碳化深度加深了0.2~1.3 mm;但与未加载的基准素混凝土相比,加载后的纤维素纤维混凝土耐久性仍有所提高,电通量仅降低了12%,不同龄期碳化深度减小0.4~1.2 mm;200次硫酸盐干湿循环后,加载后的纤维素纤维混凝土相对动弹性模量仍比未加载的基准素混凝土高出3%.
Abstract:
According to the bending load conditions of tunnel lining concrete in service, the durabilities of cellulose fiber reinforced concrete(CFRC)unloaded and loaded to 40% four-point bending strength were studied: resistances of chloride ion permeability, carbonation, freezing-thawing and sulfate attack. These results were also compared with the durability of unloaded plain concrete without fibers. The micro-mechanisms of the effect of cellulose fiber on the durability of CFRC were investigated as well. The results show that compared with the unloaded plain concrete, the durability of the unloaded CFRC is increased dramatically due to the effects of the special hollow microstructure and hydrophilicity of cellulose fiber on the optimized pore structures and homogeneous dispersion of cellulous fibers in hardened CFRC matrix, and the electric flux of CFRC only decreases by 25%; the carbonization depth of unloaded CFRC with different ages reduces by 0.9 to 2.5 mm. The external bending load slightly weakens the durability of CFRC compared to unloaded CFRC, e.g. the electric flux increases by 17%, and the carbonization depth increases by 0.2 to 1.3 mm. However, the durability of loaded CFRC is still better than that of the unloaded plain concrete, e.g. the electric flux only reduces by 12%, and the carbonization depth reduces by 0.4 to 1.2 mm. The relative dynamic elastic modulus increases by 3% after 200 times of sulfate dry-wet cycles.

参考文献/References:

[1] 曹擎宇, 郝挺宇, 孙伟. 纤维混凝土抗裂性能分析及在隧道工程中的应用[J]. 混凝土, 2012(12): 102-105.
  Cao Qingyu, Hao Tingyu, Sun Wei. Crack resistance analysis and application to tunnel engineering of fiber concrete[J]. Concrete, 2012(12): 102-105.(in Chinese)
[2] 王梦恕, 谭忠盛. 中国隧道及地下工程修建技术[J]. 中国工程科学, 2010, 12(12): 4-10. DOI:10.3969/j.issn.1009-1742.2010.12.001.
  Wang Mengshu, Tan Zhongsheng. The construct technology of tunnel and underground engineering in China[J]. Engineering Sciences, 2010, 12(12): 4-10. DOI:10.3969/j.issn.1009-1742.2010.12.001.(in Chinese)
[3] 曹擎宇, 孙伟, 赵勇, 等. 纤维素纤维混凝土性能及在二次衬砌中的应用[J]. 铁道学报, 2012, 34(7):103-107. DOI:10.3969/j.issn.1001-8360.2012.07.016.
  Cao Qingyu, Sun Wei, Zhao Yong, et al. Performance of cellulose fiber concrete and application in secondary lining[J]. Journal of the China Railway Society, 2012, 34(7):103-107. DOI:10.3969/j.issn.1001-8360.2012.07.016.(in Chinese)
[4] Guo L P, Sun W, Cao Q Y, et al. Study on optimized mix-proportion and crack resistance of modern secondary lining concrete for high-speed railway tunnel [J]. Advanced Materials Research, 2011,168:106-110.
[5] Banthia N, Gupta R, Mindess S. Development of fiber reinforced concrete repair materials[J]. Canadian Journal of Civil Engineering, 2006, 33(2):126-133. DOI:10.1139/l05-093.
[6] 邓宗才, 张永方. 纤维素纤维混凝土抗冻性试验研究[J]. 混凝土与水泥制品, 2012(12):44-47. DOI:10.3969/j.issn.1000-4637.2012.12.012.
[7] Albert D L F, Liao L, Sergio C, et al. Design of FRC tunnel segments considering the ductility requirements of the MC-2010 application to the Barcelona Metro Line 9[C]//FRC 2014 Joint ACI-fib International Workshop: Fibre Reinforced Concrete: From Design to Structural Applications. Montreal, Canada, 2014: 480-499.
[8] 姚武, 钟文慧. 混凝土损伤自愈的机理[J]. 材料研究学报, 2006, 20(1): 24-28. DOI:10.3321/j.issn:1005-3093.2006.01.006.
  Yao Wu, Zhong Wenhui. Mechanism for self-healing of concrete damage[J]. Chinese Journal of Materials Research, 2006, 20(1):24-28. DOI:10.3321/j.issn:1005-3093.2006.01.006.(in Chinese)
[9] Bernard E S. Early-age load resistance of fibre reinforced shotcrete linings[J]. Tunnelling and Underground Space Technology, 2008, 23(4):451-460. DOI:10.1016/j.tust.2007.08.002.
[10] 金祖权, 孙伟, 张云升, 等. 混凝土在硫酸盐、氯盐溶液中的损伤过程[J]. 硅酸盐学报, 2006, 34(5):630-635.DOI:10.3321/j.issn:0454-5648.2006.05.025.
  Jin Zuquan, Sun Wei, Zhang Yunsheng, et al. Damage of concrete in sulfate and chloride solution[J]. Journal of the Chinese Ceramic Society, 2006, 34(5):630-635. DOI:10.3321/j.issn:0454-5648.2006.05.025.(in Chinese)
[11] 宦文娟. 多因素耦合作用下砖及其砌体的性能劣化规律与机理研究[D].南京:东南大学材料科学与工程学院,2013.
[12] 胡晓宇. 后交联-水解型共聚丙烯腈纤维及其吸水性能的研究[D].天津: 天津工业大学材料化工学院,2005.
[13] 郭丽萍,张丽辉,张文潇,等. 不导电微细有机纤维在硬化水泥基复合材料中的性能评价方法:中国,201210589652.4[P]. 2013-06-05.
[14] 张士萍, 邓敏, 吴建华, 等. 孔结构对混凝土抗冻性的影响[J]. 武汉理工大学学报, 2008, 30(6): 56-59.
  Zhang Shiping, Deng Min, Wu Jianhua, et al. Effect of pore structure on the frost resistance of concrete[J]. Journal of Wuhan University of Technology, 2008, 30(6): 56-59.(in Chinese)
[15] 孔丽娟, 许旭栋, 杜渊博. 不同集料混凝土抗冻性能与孔结构的关系[J].石家庄铁道大学学报(自然科学版), 2014, 27(1):88-94. DOI:10.13319/j.cnki.sjztddxxbzrb.2014.01.18.
  Kong Lijuan, Xu Xudong, Du Yuanbo. Relationship between the pore structure and frost-resistance of concrete with different types of aggregate [J]. Journal of Shijiazhuang Tiedao University(Natural Science Edition), 2014, 27(1):88-94. DOI:10.13319/j.cnki.sjztddxxbzrb.2014.01.18.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2015-08-18.
作者简介: 郭丽萍(1979—),女,博士,副教授,博士生导师,guoliping691@163.com.
基金项目: 国家自然科学基金资助项目(51378113)、水利部水科学与水工程重点实验室开放研究基金资助项目(Yk914009).
引用本文: 郭丽萍,张文潇,孙伟,等.隧道用纤维素纤维混凝土在弯拉荷载作用下的耐久性[J].东南大学学报(自然科学版),2016,46(3):612-618. DOI:10.3969/j.issn.1001-0505.2016.03.026.
更新日期/Last Update: 2016-05-20