[1]钱学武,蔡体菁.旋转加速度计重力梯度仪数据处理方法[J].东南大学学报(自然科学版),2016,46(4):708-712.[doi:10.3969/j.issn.1001-0505.2016.04.006]
 Qian Xuewu,Cai Tijing.Data processing method for rotating accelerometer gravity gradiometer[J].Journal of Southeast University (Natural Science Edition),2016,46(4):708-712.[doi:10.3969/j.issn.1001-0505.2016.04.006]
点击复制

旋转加速度计重力梯度仪数据处理方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第4期
页码:
708-712
栏目:
仪器科学与技术
出版日期:
2016-07-20

文章信息/Info

Title:
Data processing method for rotating accelerometer gravity gradiometer
作者:
钱学武蔡体菁
东南大学仪器科学与工程学院, 南京 210096
Author(s):
Qian Xuewu Cai Tijing
School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
重力梯度仪 旋转加速度计 梯度解调 带通滤波 小波去噪
Keywords:
gravity gradiometer rotating accelerometer gradient demodulation band-passing filtering wavelet de-noising
分类号:
U666.1
DOI:
10.3969/j.issn.1001-0505.2016.04.006
摘要:
为了有效去除旋转加速度计重力梯度仪输出信号中的各种干扰噪声,提出了一种提取重力梯度信号的有效方法.首先对重力梯度仪输出信号进行故障诊断,然后采用基于Chebyshev最佳一致逼近法设计的带通滤波器对故障诊断后的信号进行滤波,并对滤波后的重力梯度信号进行梯度解调,最后采用dmey小波基函数强制阈值方法对解调后的重力梯度信息做进一步去噪处理.在重力梯度半物理仿真平台上进行了仿真试验测试,结果表明,所提方法可以有效降低有用信号均方差,不会造成数据丢失和信号偏移,提高了重力梯度测量精度.
Abstract:
In order to remove the noise in the output signals of the rotating accelerometer gravity gradiometer instrument(GGI), an effective method for extracting the gravity gradient signal is presented. First, the fault diagnosis is carried out to preprocess the output signals of the GGI. Then a band-passing filter based on the Chebyshev optimal uniform approximation method is used to filtrate the diagnosed signals, and the output signals of the band-pass filter are demodulated in the next step. Finally, the gravity gradient is further denoised by the compulsory threshold method based on the demy wavelet function. The proposed method is tested on the gravity gradient hard-in-the-loop simulation platform. The simulation results show that the method can effectively reduce the mean square deviation of the useful signals and avoid data loss or signal offset. Therefore, the method can improve the precision of the gravity gradiometer.

参考文献/References:

[1] Difrancesco D. Advances and challenges in the development and deployment of gravity gradiometer systems[C/OL]//EGM 2007 International Workshop. Capri, Italy, 2007. http://www.earthdoc.org/publication/publicationdetails/?publication=41199.
[2] Roberts D, Chowdhury P R, Lowe S J, et al. Airborne gravity gradiometer surveying of petroleum systems under Lake Tanganyika, Tanzania[C]//ASEG-PESA 2015. Perth, Australia, 2015:1-5. DOI:10.1071/aseg2015ab161.
[3] Christensen A N, Galder C V, Dransfield M. Improved resolution of fixed-wing airborne gravity gradiometer surveys[C]//2014 SEG Annual Meeting. Denver, Colorado, USA, 2014: 1319-1323. DOI: 10.1190/segam2014-0713.1.
[4] DiFrancesco D, Meyer T, Christensen A, et al. Gravity gradiometry—Today and tomorrow[C]//11th SAGA Biennial Technical Meeting and Exhibition. Swaziland, 2009: 80-83.
[5] Hodges G, Dransfield M H, Shei T C. The Falcon airborne gravity gradiometer for engineering applications[C]//Symposium on the Application of Geophysics to Engineering and Environmental Problems 2010. Keystone, Colorado, USA, 2010: 443-447. DOI:10.4133/1.3445467.
[6] Christensen A N, Hodges G. HeliFALCON? airborne gravity gradiometer data acquisition in rugged terrain[C]//Proceedings of the 11th SEGJ International Symposium. Yokohama, Japan, 2013:140-145. DOI:10.1190/segj112013-036.
[7] Difrancesco D, Grierson A, Kaputa D, et al. Gravity gradiometer systems—Advances and challenges[J]. Geophysical Prospecting, 2009, 57(4): 615-623.
[8] Dransfield M H, Christensen A N. Performance of airborne gravity gradiometers[J]. The Leading Edge, 2013, 32(8):908-922. DOI:10.1190/tle32080908.1.
[9] Jekeli C. The gravity gradiometer survey system(GGSS)[J]. Eos Transactions American Geophysical Union, 1988, 69(8):105, 116-117.
[10] Jekeli C. Statistical analysis of moving-base gravimetry and gravity gradiometry[R]. Columbus,Ohio,USA: Geodetic and GeoInfomation Science, The Ohio State University, 2003.
[11] Cesar J, Lyrio S O. Wavelet denoising of gravity gradiometry data[C]//SEG International Exposition and 71st Annual Meeting. San Antonio, USA, 2001:1474-1477. DOI:10.1190/1.1816384.
[12] Carlos D U, Braga M A, Galbiatti H F, et al. Airborne gravity gradiometry-data processing and interpretation [J]. Revista Brasileira De Geofǐsica, 2013, 31(3):427-453.
[13] Christensen A N, Dransfield M H, Galder C V. Noise and repeatability of airborne gravity gradiometry [J]. First Break, 2015, 33:55-63.
[14] Barnes G, Lumley J. Processing gravity gradient data [J]. Geophysics, 2011, 76(2):133-147.
[15] Jekeli C, Abt T L. The statistical performance of the matched filter for anomaly detection using gravity gradients[R]. Columbus, Ohio, USA: Division of Geodetic Science, Ohio State University, 2010.
[16] de Oliveira Lyrio J C S, Tenorio L, Li Y, et al. Efficient automatic denoising of gravity gradiometry data[J]. Geophysics, 2004, 69(3):772-782. DOI:10.1190/1.1759463.
[17] Kaiser J F. Nonrecursive digital filter design using the Io-sinh window function[C]//IEEE International Symposium on Circuits & Systems. San Francisco, CA, USA, 1974:20-23.
[18] 蔡体菁,钱学武,丁昊.旋转加速度计重力梯度仪重力梯度信号仿真[J].物探与化探,2015,39(S1):76-79.
  Cai Tijing, Qian Xuewu, Ding Hao. Signal simulation of gravity gradiometer of rotating accelerometer[J]. Geophysical and Geochemical Exploration, 2015, 39(S1):76-79.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2015-12-28.
作者简介: 钱学武(1981—),男,博士生;蔡体菁(联系人),男,博士,教授,博士生导师,caitij@seu.edu.cn.
基金项目: 国家高技术研究发展计划(863计划)资助项目(2011AA060501).
引用本文: 钱学武,蔡体菁.旋转加速度计重力梯度仪数据处理方法[J].东南大学学报(自然科学版),2016,46(4):708-712. DOI:10.3969/j.issn.1001-0505.2016.04.006.
更新日期/Last Update: 2016-07-20