# [1]钟天铖,汤文成,刘碧茜.推进式搅拌器固液混合的计算流体力学模拟[J].东南大学学报(自然科学版),2016,46(4):713-719.[doi:10.3969/j.issn.1001-0505.2016.04.007] 　Zhong Tiancheng,Tang Wencheng,Liu Bixi.CFD simulation of solid-liquid mixing in stirred vessel by propeller agitator[J].Journal of Southeast University (Natural Science Edition),2016,46(4):713-719.[doi:10.3969/j.issn.1001-0505.2016.04.007] 点击复制 推进式搅拌器固液混合的计算流体力学模拟() 分享到： var jiathis_config = { data_track_clickback: true };

46

2016年第4期

713-719

2016-07-20

## 文章信息/Info

Title:
CFD simulation of solid-liquid mixing in stirred vessel by propeller agitator

Author(s):
School of Mechanical Engineering, Southeast University, Nanjing 211189, China

Keywords:

TQ051.7
DOI:
10.3969/j.issn.1001-0505.2016.04.007

Abstract:
In order to investigate the solid-liquid mixing performance of the propeller agitator and provide foundation for its design and optimization, the process from the initial condition for the granules accumulating on the bottom to the steady condition is simulated by establishing the computational fluid dynamics model. The rotation of the propeller agitator, solid-liquid mixing, and turbulence in the vessel are simulated by the multiple reference frame approach, the Eulerian model, and the standard k-ε dispersed model, respectively. The initial accumulation is achieved with the patch function. According to the data of flow velocity field, solid granule distribution, moments and power, the effects of different working conditions on torque, power and suspension are discussed, and the bottom structure is improved to reduce accumulation. Numerical simulation results indicate that the axial circle of the propeller agitator is obvious, and the granule distribution is ideal. Growth of rotational speed and concentration will increase the total torque and power, and larger granules will aggravate accumulation, reduce pressure moments and raise shear stress moments. Bottom baffles can reduce accumulation and promote granule suspension. The established model and simulation results help understand the flow field characteristics of the propeller agitator, and are useful for its design and optimization.

## 参考文献/References:

[1] 陈志平,章序文,林兴华,等.搅拌与混合设备设计选用手册[M].北京:化学工业出版社, 2004:117.
[2] Micale G, Montante G, Grisafi F, et al. CFD simulation of particle distribution in stirred vessels[J]. Chemical Engineering Research and Design, 2000, 78(3): 435-444. DOI:10.1205/026387600527338.
[3] Micale G, Grisafi F, Rizzuti L, et al. CFD simulation of particle suspension height in stirred vessels[J]. Chemical Engineering Research and Design, 2004, 82(9): 1204-1213. DOI:10.1205/cerd.82.9.1204.44171.
[4] Kasat G R, Khopkar A R, Ranade V V, et al. CFD simulation of liquid-phase mixing in solid-liquid stirred reactor[J]. Chemical Engineering Science, 2008, 63(15): 3877-3885. DOI:10.1016/j.ces.2008.04.018.
[5] Wadnerkar D, Utikar R P, Tade M O, et al. CFD simulation of solid-liquid stirred tanks[J]. Advanced Powder Technology, 2012, 23(4): 445-453. DOI:10.1016/j.apt.2012.03.007.
[6] Coroneo M, Montante G, Paglianti A, et al. CFD prediction of fluid flow and mixing in stirred tanks: Numerical issues about the RANS simulations[J]. Computers & Chemical Engineering, 2011, 35(10): 1959-1968.DOI:10.1016/j.compchemeng.2010.12.007.
[7] Singh H, Fletcher D F, Nijdam J J. An assessment of different turbulence models for predicting flow in a baffled tank stirred with a Rushton turbine[J]. Chemical Engineering Science, 2011, 66(23): 5976-5988.DOI:10.1016/j.ces.2011.08.018.
[8] Zhao H L, Zhang Z M, Zhang T A, et al. Experimental and CFD studies of solid-liquid slurry tank stirred with an improved intermig impeller[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(8):2650-2659.DOI:10.1016/s1003-6326(14)63395-1.
[9] Tamburini A, Cipollina A, Micale G, et al. CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: Prediction of suspension curves[J]. Chemical Engineering Journal, 2011, 178:324-341.DOI:10.1016/j.cej.2011.10.016.
[10] Tamburini A, Cipollina A, Micale G, et al. CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: Prediction of solid particle distribution[J]. Chemical Engineering Journal, 2013, 223: 875-890.
[11] Tamburini A, Cipollina A, Micale G, et al. CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: Prediction of the minimum impeller speed for complete suspension[J]. Chemical Engineering Journal, 2012, 193: 234-255. DOI:10.1016/j.cej.2012.04.044.
[12] Joshi J B, Nere N K, Rane C V, et al. CFD simulation of stirred tanks: Comparison of turbulence models. Part I: Radial flow impellers[J]. The Canadian Journal of Chemical Engineering, 2011, 89(1): 23-82. DOI:10.1002/cjce.20446.
[13] Joshi J B, Nere N K, Rane C V, et al. CFD simulation of stirred tanks: Comparison of turbulence models. Part II: Axial flow impellers, multiple impellers and multiphase dispersions[J]. The Canadian Journal of Chemical Engineering, 2011, 89(4): 754-816.DOI:10.1002/cjce.20465.
[14] 王乐勤,杜红霞,吴大转,等. 多层桨式搅拌罐内混合过程的数值模拟[J]. 工程热物理学报, 2007, 28(3): 418-420. DOI:10.3321/j.issn:0253-231X.2007.03.018.
Wang Leqin, Du Hongxia, Wu Dazhuan, et al. Numerical simulation of mixing process in stirred tank with multiple impellers[J]. Journal of Engineering Thermophysics, 2007, 28(3): 418-420. DOI:10.3321/j.issn:0253-231X.2007.03.018.(in Chinese)
[15] Qi N, Zhang H, Zhang K, et al. CFD simulation of particle suspension in a stirred tank[J]. Particuology, 2013, 11(3): 317-326. DOI:10.1016/j.partic.2012.03.003.
[16] 严宏志,李新明,吴波, 等. 卧式双轴搅拌槽的液固两相流数值分析[J].中南大学学报(自然科学版), 2013, 44(2):532-539.
Yan Hongzhi, Li Xinming, Wu Bo, et al. Numerical analysis of liquid-solid two-phase in horizontal biaxial stirred tank[J]. Journal of Central South University(Science and Technology), 2013, 44(2):532-539.(in Chinese)

## 相似文献/References:

[1]彭佳,何杰,赵池航,等.山体坡度对山体周围高速公路路面风速及行车安全的影响[J].东南大学学报(自然科学版),2010,40(1):201.[doi:10.3969/j.issn.1001-0505.2010.01.038]
Peng Jia,He Jie,Zhao Chihang,et al.Influence of terrain slope of hilly freeway on surface wind velocity and driving safety[J].Journal of Southeast University (Natural Science Edition),2010,40(4):201.[doi:10.3969/j.issn.1001-0505.2010.01.038]
[2]向文国,徐祥,肖云汉.循环流化床上升段流体动力特性数值模拟[J].东南大学学报(自然科学版),2005,35(5):752.[doi:10.3969/j.issn.1001-0505.2005.05.021]
Xiang Wenguo,Xu Xiang,Xiao Yunhan.Fluid dynamics numerical simulation for riser of circulating fluidized bed[J].Journal of Southeast University (Natural Science Edition),2005,35(4):752.[doi:10.3969/j.issn.1001-0505.2005.05.021]
[3]任立波,韩吉田.基于CFD-DEM耦合并行算法的锥形喷动床内离散颗粒数值模拟[J].东南大学学报(自然科学版),2014,44(5):993.[doi:10.3969/j.issn.1001-0505.2014.05.021]
Ren Libo,Han Jitian.Numerical simulation of discrete particles in conical-base spouted bed based on parallel coupled CFD-DEM model[J].Journal of Southeast University (Natural Science Edition),2014,44(4):993.[doi:10.3969/j.issn.1001-0505.2014.05.021]