[1]钟天铖,汤文成,刘碧茜.推进式搅拌器固液混合的计算流体力学模拟[J].东南大学学报(自然科学版),2016,46(4):713-719.[doi:10.3969/j.issn.1001-0505.2016.04.007]
 Zhong Tiancheng,Tang Wencheng,Liu Bixi.CFD simulation of solid-liquid mixing in stirred vessel by propeller agitator[J].Journal of Southeast University (Natural Science Edition),2016,46(4):713-719.[doi:10.3969/j.issn.1001-0505.2016.04.007]
点击复制

推进式搅拌器固液混合的计算流体力学模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第4期
页码:
713-719
栏目:
化学化工
出版日期:
2016-07-20

文章信息/Info

Title:
CFD simulation of solid-liquid mixing in stirred vessel by propeller agitator
作者:
钟天铖汤文成刘碧茜
东南大学机械工程学院, 南京 211189
Author(s):
Zhong Tiancheng Tang Wencheng Liu Bixi
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
关键词:
推进式搅拌器 计算流体力学 混合过程 颗粒分布
Keywords:
propeller agitator computational fluid dynamics mixing process granule distribution
分类号:
TQ051.7
DOI:
10.3969/j.issn.1001-0505.2016.04.007
摘要:
为了研究推进式搅拌器的固液混合性能并为设计和优化提供依据,通过建立其计算流体力学模型,探讨了固体颗粒由沉积在搅拌罐底部的初态达到稳定混合的过程.搅拌器旋转、固液两相混合和罐内湍流分别采用多重参考系法、欧拉模型和标准k-ε离散模型进行模拟,初态颗粒沉积由补丁函数实现.根据流速场、固颗粒分布、力矩与功率数据研究了不同工况对力矩、功率和悬浮状态的影响,并改进底部结构以减少底部沉积.数值仿真结果表明:推进式搅拌器轴向循环显著,颗粒分布较为理想,转速和体积分数增加会提高总力矩和功率,颗粒增大则会减小压力力矩、增大切应力力矩,并且加重沉积;底挡板能够减少底部沉积并且促进颗粒悬浮.所建模型和模拟结果能够有助于加深对推进式搅拌器流场特性的了解,并有利于对其进行设计和优化.
Abstract:
In order to investigate the solid-liquid mixing performance of the propeller agitator and provide foundation for its design and optimization, the process from the initial condition for the granules accumulating on the bottom to the steady condition is simulated by establishing the computational fluid dynamics model. The rotation of the propeller agitator, solid-liquid mixing, and turbulence in the vessel are simulated by the multiple reference frame approach, the Eulerian model, and the standard k-ε dispersed model, respectively. The initial accumulation is achieved with the patch function. According to the data of flow velocity field, solid granule distribution, moments and power, the effects of different working conditions on torque, power and suspension are discussed, and the bottom structure is improved to reduce accumulation. Numerical simulation results indicate that the axial circle of the propeller agitator is obvious, and the granule distribution is ideal. Growth of rotational speed and concentration will increase the total torque and power, and larger granules will aggravate accumulation, reduce pressure moments and raise shear stress moments. Bottom baffles can reduce accumulation and promote granule suspension. The established model and simulation results help understand the flow field characteristics of the propeller agitator, and are useful for its design and optimization.

参考文献/References:

[1] 陈志平,章序文,林兴华,等.搅拌与混合设备设计选用手册[M].北京:化学工业出版社, 2004:117.
[2] Micale G, Montante G, Grisafi F, et al. CFD simulation of particle distribution in stirred vessels[J]. Chemical Engineering Research and Design, 2000, 78(3): 435-444. DOI:10.1205/026387600527338.
[3] Micale G, Grisafi F, Rizzuti L, et al. CFD simulation of particle suspension height in stirred vessels[J]. Chemical Engineering Research and Design, 2004, 82(9): 1204-1213. DOI:10.1205/cerd.82.9.1204.44171.
[4] Kasat G R, Khopkar A R, Ranade V V, et al. CFD simulation of liquid-phase mixing in solid-liquid stirred reactor[J]. Chemical Engineering Science, 2008, 63(15): 3877-3885. DOI:10.1016/j.ces.2008.04.018.
[5] Wadnerkar D, Utikar R P, Tade M O, et al. CFD simulation of solid-liquid stirred tanks[J]. Advanced Powder Technology, 2012, 23(4): 445-453. DOI:10.1016/j.apt.2012.03.007.
[6] Coroneo M, Montante G, Paglianti A, et al. CFD prediction of fluid flow and mixing in stirred tanks: Numerical issues about the RANS simulations[J]. Computers & Chemical Engineering, 2011, 35(10): 1959-1968.DOI:10.1016/j.compchemeng.2010.12.007.
[7] Singh H, Fletcher D F, Nijdam J J. An assessment of different turbulence models for predicting flow in a baffled tank stirred with a Rushton turbine[J]. Chemical Engineering Science, 2011, 66(23): 5976-5988.DOI:10.1016/j.ces.2011.08.018.
[8] Zhao H L, Zhang Z M, Zhang T A, et al. Experimental and CFD studies of solid-liquid slurry tank stirred with an improved intermig impeller[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(8):2650-2659.DOI:10.1016/s1003-6326(14)63395-1.
[9] Tamburini A, Cipollina A, Micale G, et al. CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: Prediction of suspension curves[J]. Chemical Engineering Journal, 2011, 178:324-341.DOI:10.1016/j.cej.2011.10.016.
[10] Tamburini A, Cipollina A, Micale G, et al. CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: Prediction of solid particle distribution[J]. Chemical Engineering Journal, 2013, 223: 875-890.
[11] Tamburini A, Cipollina A, Micale G, et al. CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: Prediction of the minimum impeller speed for complete suspension[J]. Chemical Engineering Journal, 2012, 193: 234-255. DOI:10.1016/j.cej.2012.04.044.
[12] Joshi J B, Nere N K, Rane C V, et al. CFD simulation of stirred tanks: Comparison of turbulence models. Part I: Radial flow impellers[J]. The Canadian Journal of Chemical Engineering, 2011, 89(1): 23-82. DOI:10.1002/cjce.20446.
[13] Joshi J B, Nere N K, Rane C V, et al. CFD simulation of stirred tanks: Comparison of turbulence models. Part II: Axial flow impellers, multiple impellers and multiphase dispersions[J]. The Canadian Journal of Chemical Engineering, 2011, 89(4): 754-816.DOI:10.1002/cjce.20465.
[14] 王乐勤,杜红霞,吴大转,等. 多层桨式搅拌罐内混合过程的数值模拟[J]. 工程热物理学报, 2007, 28(3): 418-420. DOI:10.3321/j.issn:0253-231X.2007.03.018.
  Wang Leqin, Du Hongxia, Wu Dazhuan, et al. Numerical simulation of mixing process in stirred tank with multiple impellers[J]. Journal of Engineering Thermophysics, 2007, 28(3): 418-420. DOI:10.3321/j.issn:0253-231X.2007.03.018.(in Chinese)
[15] Qi N, Zhang H, Zhang K, et al. CFD simulation of particle suspension in a stirred tank[J]. Particuology, 2013, 11(3): 317-326. DOI:10.1016/j.partic.2012.03.003.
[16] 严宏志,李新明,吴波, 等. 卧式双轴搅拌槽的液固两相流数值分析[J].中南大学学报(自然科学版), 2013, 44(2):532-539.
  Yan Hongzhi, Li Xinming, Wu Bo, et al. Numerical analysis of liquid-solid two-phase in horizontal biaxial stirred tank[J]. Journal of Central South University(Science and Technology), 2013, 44(2):532-539.(in Chinese)

相似文献/References:

[1]彭佳,何杰,赵池航,等.山体坡度对山体周围高速公路路面风速及行车安全的影响[J].东南大学学报(自然科学版),2010,40(1):201.[doi:10.3969/j.issn.1001-0505.2010.01.038]
 Peng Jia,He Jie,Zhao Chihang,et al.Influence of terrain slope of hilly freeway on surface wind velocity and driving safety[J].Journal of Southeast University (Natural Science Edition),2010,40(4):201.[doi:10.3969/j.issn.1001-0505.2010.01.038]
[2]向文国,徐祥,肖云汉.循环流化床上升段流体动力特性数值模拟[J].东南大学学报(自然科学版),2005,35(5):752.[doi:10.3969/j.issn.1001-0505.2005.05.021]
 Xiang Wenguo,Xu Xiang,Xiao Yunhan.Fluid dynamics numerical simulation for riser of circulating fluidized bed[J].Journal of Southeast University (Natural Science Edition),2005,35(4):752.[doi:10.3969/j.issn.1001-0505.2005.05.021]
[3]任立波,韩吉田.基于CFD-DEM耦合并行算法的锥形喷动床内离散颗粒数值模拟[J].东南大学学报(自然科学版),2014,44(5):993.[doi:10.3969/j.issn.1001-0505.2014.05.021]
 Ren Libo,Han Jitian.Numerical simulation of discrete particles in conical-base spouted bed based on parallel coupled CFD-DEM model[J].Journal of Southeast University (Natural Science Edition),2014,44(4):993.[doi:10.3969/j.issn.1001-0505.2014.05.021]

备注/Memo

备注/Memo:
收稿日期: 2016-01-20.
作者简介: 钟天铖(1992—),男,博士生;汤文成(联系人),男,博士,教授,博士生导师,tangwc@seu.edu.cn.
基金项目: “十二五”国家科技重大专项资助项目(2013ZX04008011).
引用本文: 钟天铖,汤文成,刘碧茜.推进式搅拌器固液混合的计算流体力学模拟[J].东南大学学报(自然科学版),2016,46(4):713-719. DOI:10.3969/j.issn.1001-0505.2016.04.007.
更新日期/Last Update: 2016-07-20