[1]程梅,董卫,乔正辉.结构化的复合声场及其操纵颗粒有效性的实验研究[J].东南大学学报(自然科学版),2016,46(4):720-726.[doi:10.3969/j.issn.1001-0505.2016.04.008]
 Cheng Mei,Dong Wei,Qiao Zhenghui.Experimental study on structured complex acoustic field and its effectiveness of particle manipulation[J].Journal of Southeast University (Natural Science Edition),2016,46(4):720-726.[doi:10.3969/j.issn.1001-0505.2016.04.008]
点击复制

结构化的复合声场及其操纵颗粒有效性的实验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第4期
页码:
720-726
栏目:
能源与动力工程
出版日期:
2016-07-20

文章信息/Info

Title:
Experimental study on structured complex acoustic field and its effectiveness of particle manipulation
作者:
程梅董卫乔正辉
东南大学能源与环境学院, 南京 210096; 东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Cheng Mei Dong Wei Qiao Zhenghui
School of Energy and Environment, Southeast University, Nanjing 210096, China
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
Helmholtz声源 共振 复合声场 烟气颗粒
Keywords:
Helmholtz sound source resonance complex acoustic field smoke particles
分类号:
TK09
DOI:
10.3969/j.issn.1001-0505.2016.04.008
摘要:
基于装置各部件固有频率相等的方法,设计制作了一种在平面声腔侧壁离散对称布置16极Helmholtz声源的实验装置,研究了平面声腔内由16极Helmholtz声源构造的复合声场及其对颗粒的操纵特性.通过理论和实验研究了Helmholtz声源的频率特性、平面声腔的谐振特性、平面声腔内复合声场的时空变化特性以及复合声场对平面声腔内充注的烟气颗粒操纵的有效性.结果表明:运行频率为1.805 kHz时,16极Helmholtz声源耦合的平面声腔能够实现同步谐振;平面声腔内形成了声压幅度逐渐衰减的环形复合声场;烟气颗粒被聚集在靠近壁面约0.5个波长的环形区域内,在平面声腔的中部形成了无颗粒区,颗粒聚集区与无颗粒区的面积比约为16∶9.
Abstract:
Based on the method with equal natural frequencies for all equipment components, an experimental device symmetrically and discretely distributed by 16 Helmholtz sound sources(HSSs)on the sidewall of a planar acoustic cavity was designed and fabricated. The complex acoustic field created by 16 HSSs in the cavity and its manipulation on particle were studied. The frequency characteristics of HSS, the resonance of planar acoustic cavity, the time-space variation feature of acoustic field and its manipulating effectiveness on filling smoke particles in planar acoustic cavity were theoretically and experimentally researched. The results show that the synchronization resonance of planar acoustic cavity coupled to 16 HSSs occurs at the working frequency 1.805 kHz. An amplitude-decaying annular complex acoustic field is generated in planar acoustic cavity. Smoke particles are gathered in the annular region about 0.5 a wavelength near the wall. There forms a particle-free zone in cavity central, and the area ratio of particle clusters to no particles is about 16∶9.

参考文献/References:

[1] Pathak B, Deepu P, Basu S, et al. Modeling of agglomeration inside a droplet with nanosuspensions in an acoustic field[J]. International Journal of Heat & Mass Transfer, 2013, 59(2): 161-166.
[2] Noorpoor A R, Sadighzadeh A, Habibnejad H. Influence of acoustic waves on deposition and coagulation of fine particles[J]. International Journal of Environmental Research, 2013, 7(1): 131-138.
[3] 杜人君,解文军.声悬浮条件下环己烷液滴的蒸发凝固[J].物理学报,2011,60(11):394-399.
  Du Renjun, Xie Wenjun. Evaporation induced solidification of cyclohexane drops under acoustic levitation condition[J]. Acta Physica Sinica, 2011, 60(11): 394-399.(in Chinese)
[4] 冷吟,赵兵,姚刚,等.可吸入颗粒物在驻波声场中运动的可视化研究[J].工程热物理学报,2007,28(S1):209-212.
  Leng Yin, Zhao Bing, Yao Gang, et al. Visualization research on inhalable particles in a standing wave acoustic field[J]. Journal of Engineering Thermophysics, 2007, 28(S1): 209-212.(in Chinese)
[5] Greenhall J, Vasquez F G, Raeymaekers B. Continuous and unconstrained manipulation of micro-particles using phase-control of bulk acoustic waves[J]. Applied Physics Letters, 2013, 103(7): 0741037-01-0741037-04. DOI:10.1063/1.4819031.
[6] 乔正辉,黄亚继,董卫.对称Helmholtz声源圆柱形波导的声学谐振特性[J].东南大学学报(自然科学版),2014,44(3):579-584. DOI:10.3969/j.issn.1001-0505.2014.03.023.
  Qiao Zhenghui, Huang Yaji, Dong Wei. Acoustic resonance characteristics of symmetric cylindrical waveguide with Helmholtz sound source[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(3): 579-584. DOI:10.3969/j.issn.1001-0505.2014.03.023.(in Chinese)
[7] Qiao Z H, Huang Y J, Vincenzo N, et al. Aerosol manipulation by acoustic tunable phase-control at resonant frequency[J]. Powder Technology, 2015, 281: 76-82. DOI:10.1016/j.powtec.2015.04.081.
[8] Harris J, Grillo V, Mafakheri E, et al. Structured quantum waves[J]. Nature Physics, 2015, 11(8): 629-634. DOI:10.1038/nphys3404.
[9] 王泽锋,胡永明,孟洲,等.水下圆柱形Helmholtz共振器的声学特性分析[J].物理学报,2008,57(11):7022-7029.
  Wang Zefeng, Hu Yongming, Meng Zhou, et al. Acoustic characteristics of underwater cylindrical Helmholtz resonator[J]. Acta Physica Sinica, 2008, 57(11): 7022-7029.(in Chinese)
[10] 周城光,刘碧龙,李晓东,等.腔壁弹性对充水亥姆霍兹共振器声学特性的影响:圆柱形腔等效集中参数模型[J].声学学报,2007,32(5):426-434. DOI:10.3321/j.issn:0371-0025.2007.05.006.
  Zhou Chengguang, Liu Bilong, Li Xiaodong, et al. Effect of elastic cavity walls on acoustic characteristics of a water-filled Helmholtz resonator: equivalent lumped parameter model for cylindrical cavity[J]. Acta Acoustic, 2007, 32(5): 426-434. DOI:10.3321/j.issn:0371-0025.2007.05.006.(in Chinese)
[11] 姚丽,董卫,吴仲武.一种电磁式声电换能器的特性研究[J].电声技术,2013,37(1):33-38. DOI:10.3969/j.issn.1002-8684.2013.01.008.
  Yao Li, Dong Wei, Wu Zhongwu. Characteristic research on electromagnetic acoustic-electric transducer[J]. Audio Engineering, 2013, 37(1): 33-38. DOI:10.3969/j.issn.1002-8684.2013.01.008.(in Chinese)
[12] Song K, Kim K, Hur S, et al. Sound pressure level gain in an acoustic metamaterial cavity[J]. Scientific Reports, 2014, 4: 7421-01-7421-06. DOI:10.1038/srep07421.
[13] Shantanu D, Sougata C, Amitesh K, et al. A new mechanics of corpuscular-wave transport of momentum and energy inside negative indexed material[J]. Fundamental Journal of Modern Physics, 2011, 1(2): 223-246.
[14] Jason S P. Radiation pressure effects in a suspended Fabry-Perot cavity[D]. Cambridge, Massachusetts, USA: Massachusetts Institute of Technology, 2006.
[15] Panigrahi R, Srivastava S K. Trapping of microwave radiation in hollow polypyrrole microsphere through enhanced internal reflection: A novel approach[J]. Scientific Reports, 2015, 5: 7638-01-7638-10. DOI:10.1038/srep07638.
[16] van Duong T, Chen R, Sun H D. Tuning whispering gallery mode lasing from self-assembled polymer droplets[J]. Scientific Reports, 2013, 3: 1362-01-1362-05. DOI:10.1038/srep01362.
[17] Skotis G D, Cumming D R S, Roberts J N, et al. Dynamic acoustic field activated cell separation[J]. Lab on a Chip, 2015, 15(3): 802-810. DOI:10.1039/c4lc01153h.
[18] 马大猷.亥姆霍兹共鸣器[J].声学技术,2002,21(1/2):2-3.
  Ma Dayou. Helmholtz resonator[J]. Technical Acoustic, 2002, 21(1/2): 2-3.(in Chinese)
[19] 马大猷.声学手册[M].修订版.北京:科学出版社,1983:288-289.
[20] Courtney C R P, Drinkwater B W, Demore C E M, et al. Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields[J]. Applied Physics Letters, 2013, 102: 12350812-01-12350812-05. DOI:10.1063/1.4798584.
[21] Vranjes J, Kono M. Energy in density gradient[J]. Physics of Plasmas, 2015, 22: 0121051-01-0121051-06.
[22] Kim T H, Yoon J, Baek S H, et al. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films[J]. Scientific Reports, 2015, 5: 11625-01-11625-10.

相似文献/References:

[1]张海涛,孙蓓蓓,陈建栋,等.运动容器内液体大幅非线性晃动实验研究[J].东南大学学报(自然科学版),2017,47(1):33.[doi:10.3969/j.issn.1001-0505.2017.01.007]
 Zhang Haitao,Sun Beibei,Chen Jiandong,et al.Experimental study on large-amplitude nonlinear liquid sloshing in moving container[J].Journal of Southeast University (Natural Science Edition),2017,47(4):33.[doi:10.3969/j.issn.1001-0505.2017.01.007]

备注/Memo

备注/Memo:
收稿日期: 2015-11-01.
作者简介: 程梅(1990—),女,硕士生;董卫(联系人),男,博士,教授,dongwei59@seu.edu.cn.
基金项目: 中央高校基本科研业务费专项资金资助项目(3203005101)、江苏省普通高校研究生科研创新计划资助项目(KYLX15_0069).
引用本文: 程梅,董卫,乔正辉.结构化的复合声场及其操纵颗粒有效性的实验研究[J].东南大学学报(自然科学版),2016,46(4):720-726. DOI:10.3969/j.issn.1001-0505.2016.04.008.
更新日期/Last Update: 2016-07-20