[1]汪峰,梁彩华,张友法,等.结霜初期超疏水表面凝结液滴的自跳跃脱落及其对结霜过程的影响[J].东南大学学报(自然科学版),2016,46(4):757-762.[doi:10.3969/j.issn.1001-0505.2016.04.014]
 Wang Feng,Liang Caihua,Zhang Youfa,et al.Jumping of condensation droplets on superhydrophobic surfaces at early frosting stage and its effects on frost formation[J].Journal of Southeast University (Natural Science Edition),2016,46(4):757-762.[doi:10.3969/j.issn.1001-0505.2016.04.014]
点击复制

结霜初期超疏水表面凝结液滴的自跳跃脱落及其对结霜过程的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第4期
页码:
757-762
栏目:
能源与动力工程
出版日期:
2016-07-20

文章信息/Info

Title:
Jumping of condensation droplets on superhydrophobic surfaces at early frosting stage and its effects on frost formation
作者:
汪峰1梁彩华1张友法2张小松1
1东南大学能源与环境学院, 南京 210096; 2东南大学材料科学与工程学院, 南京 211189
Author(s):
Wang Feng1 Liang Caihua1 Zhang Youfa2 Zhang Xiaosong1
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
关键词:
超疏水表面 凝结液滴 自跳跃 结霜
Keywords:
superhydrophobic surface condensation droplets jumping behavior frost formation
分类号:
TK124
DOI:
10.3969/j.issn.1001-0505.2016.04.014
摘要:
制备了具有微纳复合结构的超疏水表面,对其结霜过程进行了可视化观测,揭示了结霜初期表面凝结液滴的自跳跃行为及其对结霜过程的影响,并与普通表面的结霜过程进行了对比研究.实验结果表明,结霜初期,超疏水表面的凝结液滴频繁出现合并后自跳跃现象,根据液滴合并前的尺寸大小,可将自跳跃行为分为3类,而普通表面未观察到类似现象;液滴自跳跃临界半径随着液-固接触面积分数的降低和表面接触角的增大而减小.初始凝结液滴的自跳跃降低了超疏水表面液滴覆盖率和分布密度,同时引起表面霜层生长的不均匀性和霜晶结构的差异.与普通表面相比,超疏水表面可有效抑制结霜,延缓霜层生长速率.
Abstract:
A superhydrophobic surface with micro-nano structure was prepared and the visualization was carried out to study its frost formation. The jumping of condensation droplets on superhydrophobic surface at early frosting stage and its effects on the frost formation were revealed and compared with those of bare surfaces. Experimental results show that the jumping behaviors of the condensation droplets frequently appear on the superhydrophobic surface at early frosting stage. The behavtors can be divided into three types according to the sizes of the droplets before the coalescence, while there is no jumping behavior on the bare surface. The jumping critical radius decreases with the increase of the surface contact angle and the decrease of the solid-liquid contact area. Jumping of condensate droplets can reduce the droplet distribution density and surface covered fraction, and result in the unevenness of frost layer and difference in frost crystals. Compared with the bare surface, the superhydrophobic surface can effectively restrain the frost formation and delay the growth rate of the frost layer.

参考文献/References:

[1] Zhang P, Lü F Y. A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications [J]. Energy, 2015, 82: 1068-1087. DOI:10.1016/j.energy.2015.01.061.
[2] He M, Zhang Q, Zeng X, et al. Hierarchical porous surface for efficiently controlling microdroplets’ self-removal [J]. Advanced Materials, 2013, 25(16): 2291-2295. DOI:10.1002/adma.201204660.
[3] Xu L, Karunakaran R G, Guo J, et al. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles [J]. ACS Applied Materials and Interfaces, 2012, 4(2): 1118-1125.
[4] Kietzig A M, Hatzikiriakos S G, Englezos P. Patterned superhydrophobic metallic surfaces [J]. Langmuir, 2009, 25(8): 4821-4827.
[5] Jing T, Kim Y, Lee S, et al. Frosting and defrosting on rigid superhydrohobic surface [J]. Applied Surface Science, 2013, 276: 37-42.
[6] Huang L, Liu Z, Liu Y, et al. Preparation and anti-frosting performance of super-hydrophobic surface based on copper foil [J]. International Journal of Thermal Sciences, 2011, 50(4): 432-439.
[7] 丁云飞, 殷帅, 廖云丹, 等. 纳微结构疏水表面结霜过程及抑霜特性 [J]. 化工学报, 2012, 63(10): 3213-3219. DOI:10.3969/j.issn.0438-1157.2012.10.030.
  Ding Yunfei, Yin Shuai, Liao Yundan, et al. Frosting mechanism and suppression on nano/micro-structured hydrophobic surfaces [J]. CIESC Journal, 2012, 63(10): 3213-3219. DOI:10.3969/j.issn.0438-1157.2012.10.030.(in Chinese)
[8] Liu Z, Gou Y, Wang J, et al. Frost formation on a super-hydrophobic surface under natural convection conditions [J]. International Journal of Heat and Mass Transfer, 2008, 51(25): 5975-5982. DOI:10.1016/j.ijheatmasstransfer.2008.03.026.
[9] Liang C, Wang F, Lü Y, et al. Experimental study of the effects of fin surface characteristics on defrosting behavior [J]. Applied Thermal Engineering, 2015, 75: 86-92. DOI:10.1016/j.applthermaleng.2014.09.082.
[10] Wang F, Liang C, Yang M, et al. Effects of surface characteristic on frosting and defrosting behaviors of fin-tube heat exchangers [J]. Applied Thermal Engineering, 2015, 75: 1126-1132. DOI:10.1016/j.applthermaleng.2014.10.090.
[11] Schutzius T M, Jung S, Maitra T, et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces [J]. Nature, 2015, 527(7576): 82-85. DOI:10.1038/nature15738.
[12] Lü C, Hao P, Yao Z, et al. Departure of condensation droplets on superhydrophobic surfaces [J]. Langmuir, 2015, 31(8): 2414-2420. DOI:10.1038/nature15738.
[13] 刘天庆, 孙玮, 孙相彧, 等. 超疏水表面上冷凝液滴发生弹跳的机制与条件分析 [J]. 物理化学学报, 2012, 28(5):1206-1212. DOI:10.3866/PKU.WHXB201202293.
  Liu Tianqing, Sun Wei, Sun Xiangyu, et al. Mechanism and condition analysis of condensed drop jumping on super-hydrophobic surfaces [J]. Acta Physico-Chimica Sinica, 2012, 28(5):1206-1212. DOI:10.3866/PKU.WHXB201202293.(in Chinese)
[14] Xiu Y, Zhu L, Hess D W, et al. Relationship between work of adhesion and contact angle hysteresis on superhydrophobic surfaces [J]. The Journal of Physical Chemistry C, 2008, 112(30): 11403-11407. DOI:10.1021/jp711571k.
[15] Sahin A Z. Effective thermal conductivity of frost during the crystal growth period [J]. International Journal of Heat and Mass Transfer, 2000, 43(4): 539-553. DOI:10.1016/s0017-9310(99)00162-3.

备注/Memo

备注/Memo:
收稿日期: 2015-12-18.
作者简介: 汪峰(1989—),男,博士生;梁彩华(联系人),男,博士,教授,博士生导师,caihualiang@163.com.
基金项目: 国家自然科学基金资助项目(51106023)、“十二五”国家科技支撑计划资助项目(2011BAJ03B14)、东南大学优秀博士学位论文培育基金资助项目(YBJJ1506).
引用本文: 汪峰,梁彩华,张友法,等.结霜初期超疏水表面凝结液滴的自跳跃脱落及其对结霜过程的影响[J].东南大学学报(自然科学版),2016,46(4):757-762. DOI:10.3969/j.issn.1001-0505.2016.04.014.
更新日期/Last Update: 2016-07-20