[1]李盼盼,陈振乾.正方形小通道内的冷凝换热数值模拟[J].东南大学学报(自然科学版),2016,46(4):763-769.[doi:10.3969/j.issn.1001-0505.2016.04.015]
 Li Panpan,Chen Zhenqian.Numerical simulation of condensation heat transfer inside single square minichannel[J].Journal of Southeast University (Natural Science Edition),2016,46(4):763-769.[doi:10.3969/j.issn.1001-0505.2016.04.015]
点击复制

正方形小通道内的冷凝换热数值模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第4期
页码:
763-769
栏目:
能源与动力工程
出版日期:
2016-07-20

文章信息/Info

Title:
Numerical simulation of condensation heat transfer inside single square minichannel
作者:
李盼盼陈振乾
东南大学能源与环境学院, 南京 210096
Author(s):
Li Panpan Chen Zhenqian
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
正方形小通道 两相流 冷凝换热 数值模拟 VOF模型
Keywords:
square minichannel two-phase flow condensation heat transfer numerical simulation VOF(volume of fluid)model
分类号:
TK124
DOI:
10.3969/j.issn.1001-0505.2016.04.015
摘要:
采用VOF模型对制冷剂R134a在水平放置的边长为1 mm、长度50 mm正方形小通道内的凝结换热过程进行数值模拟计算,研究了入口质量流速、热流密度和冷量施加方式对小通道内冷凝换热的影响.结果表明:冷凝液最先出现在通道拐角处,随后在表面张力的作用下逐渐布满整个通道截面;沿程换热系数在入口处较大,然后沿流向急剧减小,最后趋于稳定;在恒定热流密度条件下,随着质量流速的增加,气液界面的剪切力逐渐增加,冷凝液膜随之变薄,从而导致换热系数变大;当入口质量流速恒定时,热流密度的改变对冷凝换热系数影响不明显;冷量均衡施加于通道边界比集中施加于某一边界液膜分布更均匀,更有利于冷凝换热.
Abstract:
A volume of fluid(VOF)model was adopted to simulate the condensation of R134a in a horizontal single square minichannel with side length as 1 mm and channel length as 50 mm. The effects of inlet mass velocity, heat flux, and mode of imposing cooling capacity on minichannel condensation were studied. The results show that condensation first appears at the corner of the channel, and then it is stretched on the effects of the surface tension until the whole channel boundary is covered. The local heat transfer coefficient decreases drastically on the head stream to a lowest value and then keeps almost unvaried. In the constant heat flux, the increased inlet vapor mass velocity has an impact on the enhancement of gas-liquid interface shear stress. As a result, the condensation film is thinner and the heat transfer coefficient gets higher value. While at constant inlet mass velocity, the effect of heat flux on heat transfer is unobvious. Compared with that exerted on a certain boundary intensively, cooling capacity uniformly exerted on channel boundary is more beneficial to condensation heat transfer with a uniform distribution of the liquid film.

参考文献/References:

[1] 陈永平, 肖春梅, 施明恒, 等.微通道冷凝研究的进展与展望[J]. 化工学报, 2007, 58(9): 2153-2160. DOI:10.3321/j.issn:0438-1157.2007.09.001.
  Chen Yongping, Xiao Chunmei, Shi Mingheng, et al. Review of condensation in microchannels [J]. Journal of Chemical Industry and Engineering, 2007, 58(9): 2153-2160. DOI:10.3321/j.issn:0438-1157.2007.09.001.(in Chinese)
[2] da Riva E, del Col D. Effect of gravity during condensation of R134a in a circular minichannel [J]. Microgravity Science and Technology, 2011, 23(S1):87-97. DOI:10.1007/s12217-011-9275-4.
[3] da Riva E, del Col D. Numerical simulation of laminar liquid film condensation in a horizontal circular minichannel [J]. Journal of Heat Transfer, 2012, 134(5): 807-824.
[4] del Col D, Bortolin S, Cavallini A, et al. Effect of cross sectional shape during condensation in a single square minichannel [J].International Journal of Heat and Mass Transfer, 2011, 4(17):3909-3920.DOI:10.1016/j.ijheatmasstransfer.2011.04.035.
[5] 王勋, 王文, 耑锐. R134a制冷剂在微通道中的相变传热特性[J]. 低温工程, 2009, 2: 10-14.
  Wang Xun, Wang Wen, Zhuan Rui. Experimental of condensation and heat transfer for R134a refrigerant in micro-channel heat exchanger [J]. Cryogenics, 2009, 2: 10-14.(in Chinese)
[6] Shin J S, Kim M H. An experimental study of flow condensation heat transfer inside circular and rectangular mini-channels [J]. Heat Transfer Engineering, 2005, 26(3):36-44. DOI:10.1080/01457630590907185.
[7] 杨英英, 李敏霞, 马一太. 水平光滑细管内R32冷凝换热的流行特性[J]. 化工学报, 2014, 65(2): 445-452.
  Yang Yingying, Li Minxia, Ma Yitai. Characteristics of flow pattern for condensation heat transfer of R32 in horizontal small tube [J]. Journal of Chemical Industry and Engineering, 2014, 65(2): 445-452.(in Chinese)
[8] 胡灿, 李敏霞, 马一太, 等.小通道内的冷凝换热模型分析[J]. 机械工程学报, 2012, 48(24): 134-140. DOI:10.3901/JME.2012.24.134.
  Hu Can,Li Minxia,Ma Yitai, et al. Analysis of condensation heat transfer model in small channels [J]. Journal of Mechanical Engineering, 2012, 48(24): 134-140. DOI:10.3901/JME.2012.24.134.(in Chinese)
[9] Wang H S, Rose J W. A theoretical model of film condensation in square section horizontal microchannels [J]. Chemical Engineering Research and Design, 2004, 82(4):430-434.DOI:10.1205/026387604323050137.
[10] Wang H S, Rose J W. A theory of film condensation in horizontal noncircular section microchannels [J]. Heat Transfer, 2005, 127: 1096-1105.
[11] 陈永平, 吴嘉峰, 施明恒, 等.矩形微通道中环状冷凝的三维数值模拟[J]. 化工学报, 2008, 59(8): 1923-1929. DOI:10.3321/j.issn:0438-1157.2008.08.007.
  Chen Yongping, Wu Jiafeng, Shi Mingheng, et al. Three dimensional simulation for steady annular condensation in rectangular microchannels [J]. Journal of Chemical Industry and Engineering, 2008, 59(8): 1923-1929. DOI:10.3321/j.issn:0438-1157.2008.08.007.(in Chinese)
[12] Ganapathy H, Shooshtari A, Choo K, et al. Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels [J]. International Journal of Heat & Mass Transfer, 2013, 65(5): 62-72. DOI:10.1016/j.ijheatmasstransfer.2013.05.044.
[13] Lee W H. A pressure iteration scheme for two-phase flow modeling [M]. Washington, USA: Hemisphere Publishing, 1980: 407-431.
[14] ANSYS Inc. ANSYS fluent theory guide 15.0 [EB/OL].(2013-11)[2015-11]. http://www.ansys.com.
[15] Rose J W. Surface tension effects and enhancement of condensation heat transfer [J]. Chemical Engineering Research and Design, 2004, 82(4): 419-429. DOI:10.1205/026387604323050128.
[16] Bortolin S, da Riva E, del Col D. Condensation in a square minichannel: Application of the VOF method [J]. Heat Transfer Engineering, 2014, 35(2):193-203. DOI:10.1080/01457632.2013.812493.
[17] Liu Z Y, Sunden B, Yuan J L. Numerical simulation of condensation in a rectangular minichannel using VOF model [C]// Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition. Houston, Texas, USA, 2012: 85422-01-85422-07.

相似文献/References:

[1]陈秀华,杜宪华.利用动量变化测量气力输送煤粉的质量流量[J].东南大学学报(自然科学版),1990,20(2):86.[doi:10.3969/j.issn.1001-0505.1990.02.013]
 Measuring Massflow of Pneumatic Transport Powdered Coal by Means of the Momentum Change[J].Journal of Southeast University (Natural Science Edition),1990,20(4):86.[doi:10.3969/j.issn.1001-0505.1990.02.013]
[2]龚家彪.从两相管流的某些特性探讨两相管流的流量测量问题[J].东南大学学报(自然科学版),1964,6(2):85.[doi:10.3969/j.issn.1001-0505.1964.02.005]
 Kung Chia-Piao.Discussions on The Measurement of Two-Phase Fluid Flow in Pipes[J].Journal of Southeast University (Natural Science Edition),1964,6(4):85.[doi:10.3969/j.issn.1001-0505.1964.02.005]
[3]向文国,徐祥,肖云汉.循环流化床上升段流体动力特性数值模拟[J].东南大学学报(自然科学版),2005,35(5):752.[doi:10.3969/j.issn.1001-0505.2005.05.021]
 Xiang Wenguo,Xu Xiang,Xiao Yunhan.Fluid dynamics numerical simulation for riser of circulating fluidized bed[J].Journal of Southeast University (Natural Science Edition),2005,35(4):752.[doi:10.3969/j.issn.1001-0505.2005.05.021]
[4]归柯庭,巢江辉,施明恒,等.气固磁流化床的双相模型[J].东南大学学报(自然科学版),1997,27(5):83.[doi:10.3969/j.issn.1001-0505.1997.05.015]
 Gui Keting,Chao Jianghui,Shi Mingheng,et al.A Two Phase Model of Gas Solid Magnetically Fluidized Bed[J].Journal of Southeast University (Natural Science Edition),1997,27(4):83.[doi:10.3969/j.issn.1001-0505.1997.05.015]
[5]杨瑞敏,徐桂中,丁建文,等.堆场疏浚泥颗粒分选规律及机理[J].东南大学学报(自然科学版),2013,43(3):639.[doi:10.3969/j.issn.1001-0505.2013.03.035]
 Yang Ruimin,Xu Guizhong,Ding Jianwen,et al.Grain sorting laws and mechanisms in reclaimed land of dredged slurries[J].Journal of Southeast University (Natural Science Edition),2013,43(4):639.[doi:10.3969/j.issn.1001-0505.2013.03.035]

备注/Memo

备注/Memo:
收稿日期: 2015-11-20.
作者简介: 李盼盼(1989—),女,博士生;陈振乾(联系人),男,博士,教授,博士生导师,zqchen@seu.edu.cn.
基金项目: 总装载人航天工程空间应用系统“天舟一号”货运飞船“两相系统实验平台关键技术研究”资助项目(TZYY08001).
引用本文: 李盼盼,陈振乾.正方形小通道内的冷凝换热数值模拟[J].东南大学学报(自然科学版),2016,46(4):763-769. DOI:10.3969/j.issn.1001-0505.2016.04.015.
更新日期/Last Update: 2016-07-20