[1]殷志平,吴义锋,吕锡武.基于一级动力学模型的水培蔬菜滤床氮磷去除模拟[J].东南大学学报(自然科学版),2016,46(4):812-817.[doi:10.3969/j.issn.1001-0505.2016.04.023]
 Yin Zhiping,Wu Yifeng,Lü Xiwu.Simulation of nitrogen and phosphorus removal in hydroponic vegetable filter bed based on first-order kinetics model[J].Journal of Southeast University (Natural Science Edition),2016,46(4):812-817.[doi:10.3969/j.issn.1001-0505.2016.04.023]
点击复制

基于一级动力学模型的水培蔬菜滤床氮磷去除模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第4期
页码:
812-817
栏目:
环境科学与工程
出版日期:
2016-07-20

文章信息/Info

Title:
Simulation of nitrogen and phosphorus removal in hydroponic vegetable filter bed based on first-order kinetics model
作者:
殷志平吴义锋吕锡武
东南大学能源与环境学院, 南京 210096
Author(s):
Yin Zhiping Wu Yifeng Lü Xiwu
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
水培蔬菜滤床 一级动力学模型 一级动力学模型拓展式
Keywords:
hydroponic vegetable filter bed nitrogen phosphorus first-order kinetics model extended first-order kinetics model
分类号:
X171
DOI:
10.3969/j.issn.1001-0505.2016.04.023
摘要:
采用水培蔬菜滤床(HVFB)净化及经生化处理后的生活污水尾水,并选用一级动力学模型开展HVFB氮磷去除动力学试验研究.基于Arrhenius公式采用试验数据分析水温与一级反应面积速率常数K间关系,采用乘幂和指数回归方程拟合20 ℃时面积速率常数K20与水力负荷间关系,并构建滤床模型拓展式.Arrhenius拟合结果表明,番茄滤床的氨氮、总氮(TN)和总磷(TP)的温度系数θ值分别为1.08,1.06和1.01,空心菜滤床θ值分别为1.07,1.04和1.00,氨氮、TN的K值与水温呈显著正相关,氨氮的K值受水温影响更为敏感,TP的K值与水温无明显关系.在拟合K20与水力负荷关系上,乘幂回归整体上较指数回归具有更高的准确性.考虑了水温和水力负荷因素的一级动力学模型拓展式的预测具有较高的准确性和可靠性.增强TN去除效率(水温小于19.5 ℃)和TP去除效率(水温大于19.5 ℃),可有效提高HVFB整体进水水力负荷.
Abstract:
The kinetics studies on nitrogen and phosphorus removal in hydroponic vegetable filter beds(HVFB)were conducted by using first-order kinetics model. The raw water was domestic sewage which were treated by biochemical treatment processes. The dependence of first-order area rate constant K of the water temperature was estimated by the Arrhenius equation, and the relationship between K20 and hydraulic loading rate q was analyzed by power and exponential regression equations. Meanwhile, the extended kinetics model of the filter bed was constructed. The results show that, for the tomato filter bed, the temperature coefficient θ values of ammonia nitrogen, total nitrogen(TN), and total phosphorus(TP)were 1.08, 1.06, and 1.01, respectively, and the θ values in water spinach filter bed were 1.07, 1.04, and 1.00, respectively. The K values of ammonia nitrogen and TN have significant positive correlation with the water temperature, and the K values of ammonia nitrogen are more sensitive to water temperature change, but there are no significant differences between the K values at different water temperatures for TP. Compared with exponential regression equation, power regression equation is more suitable for describing the relationship between K20 and q. The extended first-order models, considering the influences of the water temperature and q on K, have a certain accuracy and higher reliability in predicting removal results of filter beds. Enhanced TN removal efficiency(water temperature is lower than 19.5 ℃)and TP removal efficiency(water temperature is higher than 19.5 ℃)will cause an overall increase on hydraulic loading rate of HVFB.

参考文献/References:

[1] Headley T R, Tanner C C. Constructed wetlands with floating emergent macrophytes: An innovative stormwater treatment technology [J] Critical Reviews in Environmental Science and Technology, 2012, 42(21): 2261-2310. DOI:10.1080/10643389.2011.574108.
[2] Sample D J, Rangarajan S, Lee J, et al. Urban wet-weather flows [J]. Water Environment Research, 2014, 86(10): 910-991. DOI:10.2175/106143014x14031280667372.
[3] Zhao F L, Yang W D, Zeng Z, et al. Nutrient removal efficiency and biomass production of different bioenergy plants in hypereutrophic water [J]. Biomass & Bioenergy, 2012, 42(7):212-218. DOI:10.1016/j.biombioe.2012.04.003.
[4] Zhou X H, Wang G X, Yang F. Nitrogen removal from eutrophic river waters by using Rumex acetosa cultivated in ecological floating beds [J]. Fresenius Environmental Bulletin, 2012, 21(7A): 1920-1928.
[5] Li H, Hao H, Yang X, et al. Purification of refinery wastewater by different perennial grasses growing in a floating bed [J]. Journal of Plant Nutrition, 2012, 35(1): 93-110. DOI:10.1080/01904167.2012.631670.
[6] Nduwimana A, Yang X L, Wang L R. Evaluation of a cost effective technique for treating aquaculture water discharge using Lolium perenne Lam as a biofilter [J]. J Environ Sci, 2007, 19(9): 1079-1085.
[7] Wen L, Recknagel F. In situ removal of dissolved phosphorus in irrigation drainage water by planted floats: Preliminary results from growth chamber experiment [J]. Agriculture, Ecosystems & Environment, 2002, 90(1): 9-15. DOI:10.1016/s0167-8809(01)00292-4.
[8] 宋海亮, 吕锡武, 李先宁, 等. 水生植物滤床处理太湖入湖河水的工艺性能[J]. 东南大学学报(自然科学版), 2004, 34(6): 810-813. DOI:10.3321/j.issn:1001-0505.2004.06.021.
  Song Hailiang, Lü Xiwu, Li Xianning, et al. Performance of aquatic plant filter bed for the treatment of Taihu Lake inflow water [J]. Journal of Southeast University (Natural Science Edition), 2004, 34(6): 810-813. DOI:10.3321/j.issn:1001-0505.2004.06.021.(in Chinese)
[9] Borne K E, Fassman E A, Tanner C C. Floating treatment wetland retrofit to improve stormwater pond performance for suspended solids, copper and zinc [J]. Ecological Engineering, 2013, 54(5): 173-182. DOI:10.1016/j.ecoleng.2013.01.031.
[10] Chang N B, Xuan Z M, Marimon Z, et al. Exploring hydrobiogeochemical processes of floating treatment wetlands in a subtropical stormwater wet detention pond [J]. Ecological Engineering, 2013, 54: 66-76. DOI:10.1016/j.ecoleng.2013.01.019.
[11] Xin Z J, Li X Z, Nielsen S N, et al. Effect of stubble heights and treatment duration time on the performance of water dropwort floating treatment wetlands(FTWs)[J]. Ecological Chemistry and Engineering S, 2012, 19(3): 315330. DOI:10.2478/v10216-011-0023-x.[12] Weragoda S K, Jinadasa K B S N, Zhang D Q, et al. Tropical application of floating treatment wetlands [J]. Wetlands, 2012, 32(5): 955-961. DOI:10.1007/s13157-012-0333-5.
[13] Stein O R, Biederman J A, Hook P B, et al. Plant species and temperature effects on the k-C* first-order model for COD removal in batch-loaded SSF wetlands[J]. Ecological Engineering, 2006, 26(2): 100-112. DOI:10.1016/j.ecoleng.2005.07.001.
[14] Saeed T, Sun G. Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands [J]. Water Research, 2011, 45(10): 3137-3152. DOI:10.1016/j.watres.2011.03.031.
[15] Shih S S, Kuo P H, Fang W T, et al. A correction coefficient for pollutant removal in free water surface wetlands using first-order modeling [J]. Ecological Engineering, 2013, 61(PA): 200-206. DOI:10.1016/j.ecoleng.2013.09.054.
[16] Karpuzcu M E, Stringfellow W T. Kinetics of nitrate removal in wetlands receiving agricultural drainage [J]. Ecological Engineering, 2012, 42: 295-303. DOI:10.1016/j.ecoleng.2012.02.015.
[17] Kadlec R H. The inadequacy of first-order treatment wetland models [J]. Ecological Engineering, 2000, 15(1): 105-119. DOI:10.1016/s0925-8574(99)00039-7.
[18] Liolios K A, Moutsopoulos K N, Tsihrintzis V A. Modeling of flow and BOD fate in horizontal subsurface flow constructed wetlands [J]. Chemical Engineering Journal, 2012, 200-202(16): 681-693. DOI:10.1016/j.cej.2012.06.101.
[19] Andersen J H, Murray C, Kaartokallio H, et al. A simple method for confidence rating of eutrophication status classifications [J]. Marine Pollution Bulletin, 2010, 60(6): 919-924. DOI:10.1016/j.marpolbul.2010.03.020.
[20] Liu Z R, Chen X S, Zhou L M, et al. Development of a first-order kinetics-based model for the adsorption ofnickel onto peat [J]. Mining Science and Technology(China), 2009, 19(2): 230-234. DOI:10.1016/s1674-5264(09)60044-2.
[21] Rousseau D P L, Vanrolleghem P A, de Pauw N. Model-based design of horizontal subsurface flow constructed treatment wetlands: A review [J]. Water Research, 2004, 38(6): 1484-1493. DOI:10.1016/j.watres.2003.12.013.
[22] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社 2002: 243-284.
[23] Tanner C C, Clayton J S, Upsdell M P. Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands—Ⅰ. Removal of oxygen demand, suspended solids and faecal coliforms [J]. Water Research, 1995, 29(1): 17-26.
[24] Wang C Y, Sample D J. Assessing floating treatment wetlands nutrient removal performance through a first order kinetics model and statistical inference [J]. Ecological Engineering, 2013, 61: 292-302. DOI:10.1016/j.ecoleng.2013.09.019.
[25] Cookson W R, Cornforth I S, Rowarth J S. Winter soil temperature(2-15 ℃)effects on nitrogen transformations in clover green manure amended or unamended soils; a laboratory and field study [J]. Soil Biologyand and Biochemistry, 2002, 34(10): 1401-1415. DOI:10.1016/s0038-0717(02)00083-4.
[26] Werker A G, Dougherty J M, McHenry J L, et al. Treatment variability for wetland wastewater treatment design in cold climates [J]. Ecological Engineering, 2002, 19(1): 1-11. DOI:10.1016/s0925-8574(02)00016-2.
[27] Akratos C S, Tsihrintzis V A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands [J]. Ecological Engineering, 2007, 29(2): 173-191. DOI:10.1016/j.ecoleng.2006.06.013.
[28] Kadlec R H, Knight R L. Treatment wetlands [M]. Boca Raton, FL,USA: CRC Press, 1996: 893.
[29] Kadlec R H, Reddy K R. Temperature effects in treatment wetlands [J]. Water Environment Research, 2001, 73(5): 543-557.
[30] Nakasone H, Kuroda H, Kato T, et al. Nitrogen removal from water containing high nitrate nitrogen in a paddy field(wetland)[J]. Wat Sci Tech, 2003, 48(10): 209-216.
[31] 宋海亮. 水生植物滤床技术改善富营养化水体水质的研究[D]. 南京:东南大学土木工程学院, 2005.

相似文献/References:

[1]宋海亮,吕锡武,李先宁,等.水生植物滤床处理太湖入湖河水的工艺性能[J].东南大学学报(自然科学版),2004,34(6):810.[doi:10.3969/j.issn.1001-0505.2004.06.021]
 Song Hailiang,Lü Xiwu,Li Xianning,et al.Performance of aquatic plant filter bed for the treatment of Taihu Lake inflow water[J].Journal of Southeast University (Natural Science Edition),2004,34(4):810.[doi:10.3969/j.issn.1001-0505.2004.06.021]

备注/Memo

备注/Memo:
收稿日期: 2015-11-04.
作者简介: 殷志平(1991—),男,硕士生;吴义锋(联系人),男,博士,副教授,shinfun@seu.edu.cn.
基金项目: “十二五”国家科技支撑计划资助项目(2013BAJ10B13).
引用本文: 殷志平,吴义锋,吕锡武.基于一级动力学模型的水培蔬菜滤床氮磷去除模拟[J].东南大学学报(自然科学版),2016,46(4):812-817. DOI:10.3969/j.issn.1001-0505.2016.04.023.
更新日期/Last Update: 2016-07-20