[1]曹玉鹏,丁建文,马志华,等.负压条件下高含水率疏浚泥轴对称大应变固结模型[J].东南大学学报(自然科学版),2016,46(4):860-865.[doi:10.3969/j.issn.1001-0505.2016.04.031]
 Cao Yupeng,Ding Jianwen,Ma Zhihua,et al.Axisymmetric large-strain consolidation model for dredged clays with high water content under vacuum preloading[J].Journal of Southeast University (Natural Science Edition),2016,46(4):860-865.[doi:10.3969/j.issn.1001-0505.2016.04.031]
点击复制

负压条件下高含水率疏浚泥轴对称大应变固结模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第4期
页码:
860-865
栏目:
土木工程
出版日期:
2016-07-20

文章信息/Info

Title:
Axisymmetric large-strain consolidation model for dredged clays with high water content under vacuum preloading
作者:
曹玉鹏1丁建文2马志华34张政田4
1山东科技大学交通学院, 青岛 266590; 2东南大学岩土工程研究所, 南京 210096; 3江苏省水利工程建设局, 南京 210029; 4江苏省水利厅, 南京 210029
Author(s):
Cao Yupeng1 Ding Jianwen2 Ma Zhihua34 Zhang Zhengtian4
1 College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China
2 Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China
3 Water Conservancy Construction Bureau of Jiangsu Province, Nanjing 210029, China
4 Water Resources Department of Jiangsu Province, Nanjing 210029, China
关键词:
高含水率疏浚泥 轴对称模型 大应变固结 非线性 等应变 负压
Keywords:
dredged clays with high water content axisymmetric model large-strain consolidation non-linearity equal strain vacuum preloading
分类号:
TU443
DOI:
10.3969/j.issn.1001-0505.2016.04.031
摘要:
基于Gibson一维大应变固结理论和Hansbo径向固结理论,摒弃小应变假定,引入负压边界条件,建立了等应变条件下以孔隙比为变量的负压轴对称大应变固结(NALSC)模型.NALSC模型同时考虑了高含水率疏浚泥的材料和几何非线性、径竖向渗流、负压沿深度衰减等因素,其他学者建立的固结方程是NALSC模型的特例.基于线性化的材料参数,对固结度变化时程进行了数值模拟,结果表明,在不同的渗流条件和真空度衰减方式下,NALSC模型与现有模型的固结度计算值基本吻合;土层厚度与砂井有效加固直径比值不小于10时,土体主要发生径向固结,竖向固结可以忽略;NALSC模型的计算精度较高,适用于高含水率疏浚泥的大应变固结性状分析.
Abstract:
Based on the Gibson one-dimensional large-strain consolidation theory and the Hansbo radial consolidation theory, abandoning the small strain assumption, introducing the negative pore water pressure boundary condition, the negative axisymmetric large-strain consolidation model(NALSC)with void ratio as a variable is established under the equal strain condition. The NALSC model considers the material and geometry nonlinearity, radial and vertical flows, and vacuum preloading attenuation along the depth of dredged clays with high water content. Equations established by other researchers are the special cases of the NALSC model. According to linearized material parameters, the numerical simulations of consolidation degrees change progress are carried out. Results show that under different seepage conditions and vacuum decay methods,the predicted consolidation degrees of the proposed model are in good agreement with those of existing models. When the ratio of layer thickness and effective reinforcement diameter is not less than 10, the radial consolidation is produced, and the vertical consolidation can be ignored. The NALSC model has high calculation accuracy, and it can be used for large-strain consolidation property analysis of dredged clays with high water content.

参考文献/References:

[1] 徐元. 港口建设与疏浚之间关系浅议——兼谈第16届世界疏浚大会有关情况[J]. 中国港湾建设, 2001(6): 65-68. DOI:10.3969/j.issn.1003-3688.2001.06.017.
  Xu Yuan. A preliminary study on relationship between port construction and dredging—With an introduction to related subjects of 16th world dredging congress[J]. China Harbour Engineering, 2001(6):65-68.DOI:10.3969/j.issn.1003-3688.2001.06.017.(in Chinese)
[2] 程万钊. 吹填淤泥真空预压快速处理技术研究[D]. 南京:南京水利科学研究院, 2010.
[3] 董志良,张功新,周琦,等. 天津滨海新区吹填造陆浅层超软土加固技术研发及应用[J]. 岩石力学与工程学报, 2011, 30(5): 1073-1080.
  Dong Zhiliang,Zhang Gongxin,Zhou Qi,et al. Research and application of improvement technology of shallow ultra-soft soil formed by hydraulic reclamation in Tianjin Binhai new area[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 1073-1080.(in Chinese)
[4] 陈平山, 董志良, 张功新. 新吹填淤泥浅表层加固中“土桩”形成机理及数值分析[J]. 水运工程, 2012(1):158-163. DOI:10.3969/j.issn.1002-4972.2012.01.032.
  Chen Pingshan, Dong Zhiliang, Zhang Gongxin. Mechanism and numerical simulation of the “soil piles” in the fresh hydraulic mud fill treated by surface-layer improvement technique[J]. Port & Waterway Engineering, 2012(1):158-163. DOI:10.3969/j.issn.1002-4972.2012.01.032.(in Chinese)
[5] Barron R A. Consolidation of fine grained soils by drain wells [J]. Transactions of American Society for Civil Engineers, 1948, 113:718-724.
[6] Hansbo S. Consolidation of fine-grained soils by prefabricated drains [C]//Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering. Rotterdam, The Netherlands, 1981, 3: 677-682.
[7] 谢康和,曾国熙. 等应变条件下的砂井地基固结解析解理论[J]. 岩土工程学报, 1989, 11(2): 3-17.
  Xie Kanghe, Zeng Guoxi. Consolidation theories for drain wells under equal strain condition [J]. Chinese Journal of Geotechnical Engineering, 1989, 11(2): 3-17.(in Chinese)
[8] 董志良. 堆载及真空预压砂井地基固结解析理论[J]. 水运工程, 1992(9): 1-7.
[9] 周琦,张功新,王友元,等. 真空预压条件下的砂井地基Hansbo固结解[J]. 岩石力学与工程学报,2010, 29(z2): 3994-3999.
  Zhou Qi,Zhang Gongxin,Wang Youyuan, et al. Hansbo’s consolidation solution for sand-drained ground under vacuum preloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(z2): 3994-3999.(in Chinese)
[10] 张仪萍, 严露, 俞亚南, 等.真空预压加固软土地基变形与固结计算研究[J].岩土力学, 2011, 32(S1):150-154.
  Zhang Yiping, Yan Lu, Yu Yanan, et al.Solutions for settlement and consolidation of soft ground with vacuum preloading[J].Rock and Soil Mechanics, 2011, 32(S1):150-154.(in Chinese)
[11] 彭劼, 董江平, 宋恩润, 等. 考虑加载过程的真空预压轴对称解析解[J]. 岩土力学, 2010, 31(z1): 79-85. DOI:10.3969/j.issn.1000-7598.2010.z1.013.
  Peng Jie, Dong Jiangping, Song Enrun, et al. Axisymmetric analytical solution of vacuum preload considering the loading process[J]. Rock and Soil Mechanics, 2010, 31(z1):79-85. DOI:10.3969/j.issn.1000-7598.2010.z1.013.(in Chinese)
[12] Indraratna B, Rujikiatkamjorn C, Sathananthan I. Radial consolidation of clay using compressibility indices and varying horizontal permeability [J]. Canadian Geotechnical Journal, 2005, 42(5):1330-1341.
[13] Wu H, Hu L M. Analytical and numerical solutions for vacuum preloading considering a radius related strain distribution[J]. Mechanics Research Communications, 2012, 44:9-14. DOI:10.1016/j.mechrescom.2012.04.005.
[14] 曹玉鹏. 高含水率疏浚泥可控真空砂井大应变固结试验与模型研究[D]. 南京:东南大学交通学院, 2013.
[15] Gibson R E, England G L, Hussey M J. The theory of one-dimensional soil consolidation of saturated clays. Ⅰ. Finite nonlinear consolidation of thin homogeneous layers [J]. Geotechnique, 1967, 17(3): 261-273.
[16] Xie K H, Leo C J. Analytical solutions of one-dimensional large strain consolidation of saturated and homogeneous clay [J]. Computers and Geotechnics, 2004, 31(4): 301-314. DOI:10.1016/j.compgeo.2004.02.006.
[17] 江辉煌, 赵有明, 刘国楠, 等. 砂井地基的大变形固结[J]. 岩土工程学报, 2011, 33(2): 302-308.
  Jiang Huihuang, Zhao Youming, Liu Guonan, et al. Large strain consolidation of soft ground with vertical drains [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 302-308.(in Chinese)
[18] Fox P J, Nicola M D, Quigley D W. Piecewise-linear model for large strain radial consolidation [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129: 940-950.
[19] Indraratna B, Rujikiatkamjorn C, Sathananthan I. Analytical and numerical solutions for a single vertical drain including the effects of vacuum preloading [J]. Canadian Geotechnical Journal, 2005, 42(4): 994-1014.
[20] Rujikiatkamjorn C, Indraratna B. Analytical solutions and design curves for vacuum-assisted consolidation with both vertical and horizontal drainage [J]. Canadian Geotechnical Journal, 2007, 44(2):188-200.
[21] 陆金甫,关治. 偏微分方程数值解法[M]. 北京:清华大学出版社,2004: 82-111.

备注/Memo

备注/Memo:
收稿日期: 2015-12-07.
作者简介: 曹玉鹏(1985—),男,博士,讲师;丁建文(联系人),男,博士,副教授,jwding@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51178107,51378118)、“十二五”国家科技支撑计划资助项目(2015BAB07B06)、水利部公益性行业专项经费资助项目(201401006)、山东科技大学人才引进科研启动基金资助项目(2016RCJJ021).
引用本文: 曹玉鹏,丁建文,马志华,等.负压条件下高含水率疏浚泥轴对称大应变固结模型[J].东南大学学报(自然科学版),2016,46(4):860-865. DOI:10.3969/j.issn.1001-0505.2016.04.031.
更新日期/Last Update: 2016-07-20