[1]艾志勇,蒋金洋,孙伟,等.新型合金耐蚀钢筋Cr10Mo1的阴极行为及其阻抑机制[J].东南大学学报(自然科学版),2016,46(4):872-878.[doi:10.3969/j.issn.1001-0505.2016.04.033]
 Ai Zhiyong,Jiang Jinyang,Sun Wei,et al.Cathodic behaviour of new alloy corrosion-resistant steel Cr10Mo1 and its depression mechanism[J].Journal of Southeast University (Natural Science Edition),2016,46(4):872-878.[doi:10.3969/j.issn.1001-0505.2016.04.033]
点击复制

新型合金耐蚀钢筋Cr10Mo1的阴极行为及其阻抑机制()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第4期
页码:
872-878
栏目:
化学化工
出版日期:
2016-07-20

文章信息/Info

Title:
Cathodic behaviour of new alloy corrosion-resistant steel Cr10Mo1 and its depression mechanism
作者:
艾志勇12蒋金洋12孙伟12麻晗3张建春3宋丹124王丹芊12
1东南大学材料科学与工程学院, 南京 211189; 2东南大学江苏省土木工程材料重点实验室, 南京 211189; 3江苏省(沙钢)钢铁研究院, 张家港 215625; 4河海大学力学与材料学院, 南京 210098
Author(s):
Ai Zhiyong12 Jiang Jinyang12 Sun Wei12 Ma Han3Zhang Jianchun3 Song Dan124 Wang Danqian12
1School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China
3Research Institute of Jiangsu Shasteel Iron and Steel, Zhangjiagang 215625, China
4College of Mechanics and Materials, Hohai University, Nanjing 210098, China
关键词:
合金耐蚀钢筋 钝化膜 阴极行为 阻抑机制
Keywords:
alloy corrosion-resistant steel passive film cathodic behaviour depression mechanism
分类号:
TQ172.1
DOI:
10.3969/j.issn.1001-0505.2016.04.033
摘要:
应用阴极动电位极化法研究比较了预先钝化合金耐蚀钢筋Cr10Mo1和普通碳素钢筋在不同Cl-浓度(0,0.2,0.6,1.0 mol/L)的模拟混凝土孔溶液(pH 13.5)中的阴极反应行为,结合Mott-Schottky方法测试钢筋钝化膜导电性能及XPS方法分析钝化膜组成结构,分析了2种钢筋阴极行为存在差异的原因,揭示了合金耐蚀钢筋阴极行为阻抑机制.结果表明:在相同Cl-浓度下,合金耐蚀钢筋阴极反应速率总是低于普通碳素钢筋,随Cl-浓度增大,这一差异更加明显.相比普通碳素钢筋,合金耐蚀钢筋钝化膜具有更低的载流子密度,更有利于阻碍阴极反应电子传递.Cr氧化物作为合金耐蚀钢筋钝化膜不同于普通碳素钢筋的关键成分,高浓度氯盐下仍可保持稳定并维持钝化膜层密实完整,继续阻碍钢筋阴极反应电子传递.
Abstract:
Cathode reaction behaviours of previously passivated alloy corrosion-resistant steel Cr10Mo1 and plain carbon steel in simulated concrete pore solutions(pH 13.5)with different chloride contents(0, 0.2,0.6,1.0 mol/L)were investigated by a cathodic potentiodynamic polarization method, combined with measurements of the conduct electricity and chemical composition of passive films by the Mott-Schottky approach and X-ray photoelectron spectroscopy(XPS), respectively. Based on these, the reasons for differences between the two steels’ cathodic behaviours were analyzed, and the mechanisms responsible for the cathodic depression of the alloy corrosion-resistant steel were revealed. The results show that the alloy corrosion-resistant steel has a lower cathode reaction rate than plain carbon steel at the same chloride level, and the difference is more significant with the increase of chloride contents. Passive films formed on the alloy corrosion-resistant steel have lower carrier concentration than those on plain carbon steel, which is more favorable to hinder electron transfer in cathodic reaction. Cr oxides, as the key components which just make the differences between passive films on the alloy corrosion-resistant steel and plain carbon steel, can still remain stable and maintain dense and sound passive film layers for the alloy corrosion-resistant steel under high-concentration chlorides, continuously hampering electron transfer in the cathodic reaction for the steel.

参考文献/References:

[1] 牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003:1-3.
[2] Broomfield J P. Steel corrosion in concrete—Understanding, investigation and repair[M]. 2nd ed. London: Taylor & Francis, 2007: 112-137.
[3] 廖朝华.使用寿命100年的高性能混凝土和钢筋[J].中外公路,2002,22(2):61-63. DOI:10.3969/j.issn.1671-2579.2002.02.020.
[4] Presuel-Moreno F, Scully J R, Sharp S R. Literature review of commercially available alloys that have potential as low-cost, corrosion-resistant concrete reinforcement[J]. Corrosion, 2010, 66(8):1542-1546. DOI:10.5006/1.3479955.
[5] 杨忠民,陈颖,王慧敏.高强耐蚀钢筋[C]//2009全国建筑钢筋生产、设计与应用技术交流研讨会.北京,2009:133-137.
[6] 张帆,范植金,徐志东,等.高强度耐腐蚀含Cr钢筋及其轧制工艺:中国,CN103849820A[P].2014-06-11.
[7] 张建春,黄文克,李阳,等.一种具有高耐腐蚀性的高强钢筋及其制备方法:中国,CN103789677A[P].2014-05-14.
[8] Sato N. An overview on the passivity of metals[J]. Corrosion Science, 1990, 31(90): 1-19. DOI:10.1016/0010-938x(90)90086-k.
[9] Liu M, Cheng X Q, Li X G, et al. Corrosion behavior of Cr modified HRB400 steel rebar in simulated concrete pore solution[J]. Construction & Building Materials, 2015, 93: 884-890. DOI:10.1016/j.conbuildmat.2015.05.073.
[10] Mancio M, Kusinski G, Monteiro P J M, et al. Electrochemical and in-situ SERS study of passive film characteristics and corrosion performance of 9%Cr microcomposite steel in highly alkaline environments[J]. Comptes Rendus Mathematique, 2009, 6(5): 173-188. DOI:10.1520/jai101903.
[11] Lu P, Kursten B, Macdonald D D. Deconvolution of the partial anodic and cathodic processes during the corrosion of carbon steel in concrete pore solution under simulated anoxic conditions[J]. Electrochimica Acta, 2014, 143: 312-323. DOI:10.1016/j.electacta.2014.08.027.
[12] Poursaee A, Hansson C M. Reinforcing steel passivation in mortar and pore solution[J]. Cement & Concrete Research, 2007, 37(7): 1127-1133. DOI:10.1016/j.cemconres.2007.04.005.
[13] Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution[J]. Applied Surface Science, 2011, 258(1): 631-639. DOI:10.1016/j.apsusc.2011.06.077.
[14] Donik C, Kocijan A, Grant J T, et al. XPS study of duplex stainless steel oxidized by oxygen atoms[J]. Corrosion Science, 2009, 51(4): 827-832. DOI:10.1016/j.corsci.2009.01.021.
[15] Xu W, Daub K, Zhang X, et al. Oxide formation and conversion on carbon steel in mildly basic solutions[J]. Electrochimica Acta, 2009, 54(24): 5727-5738. DOI:10.1016/j.electacta.2009.05.020.
[16] Morrison S R.半导体与金属氧化膜的电化学[M].吴辉煌,译.北京:科学出版社,1988:128-140.
[17] Wijesinghe T L S L, Blackwood D J. Photocurrent and capacitance investigations into the nature of the passive films on austenitic stainless steels[J]. Corrosion Science, 2008, 50(1): 23-34. DOI:10.1016/j.corsci.2007.06.009.
[18] Hamadou L, Kadri A, Benbrahim N. Characterisation of passive films formed on low carbon steel in borate buffer solution(pH 9.2)by electrochemical impedance spectroscopy[J]. Applied Surface Science, 2005, 252(5): 1510-1519. DOI:10.1016/j.apsusc.2005.02.135.
[19] Meng G Z, Li Y, Shao Y W, et al. Effect of Cl- on the properties of the passive films formed on 316L stainless steel in acidic solution[J]. Journal of Materials Science & Technology, 2014, 30(3): 253-258. DOI:10.1016/S1006-706X(13)60101-6.
[20] Hurley M F, Scully J R. Threshold chloride concentrations of selected corrosion-resistant rebar materials compared to carbon steel[J]. Corrosion, 2006, 62(10): 892-904. DOI:10.5006/1.3279899.
[21] 杜敏,孙兆栋.410不锈钢在海水中阴极极化行为的研究[J].中国海洋大学学报(自然科学版),2010,40(9):91-95.
  Du Min, Sun Zhaodong. Study on the cathodic polarization behavior of stainless steel 410 in seawater[J]. Periodical of Ocean University of China(Natural Science Edition), 2010, 40(9): 91-95.(in Chinese)
[22] Abreu C M, Cristóbal M J, Montemor M F, et al. Galvanic coupling between carbon steel and austenitic stainless steel in alkaline media[J]. Electrochimica Acta, 2002, 47(13): 2271-2279. DOI:10.1016/s0013-4686(02)00086-5.

相似文献/References:

[1]左晓宝,蒋慷,冯禹翔,等.模拟孔溶液中球墨铸铁表面钝化膜脱钝过程及氯离子阈值分析[J].东南大学学报(自然科学版),2017,47(2):392.[doi:10.3969/j.issn.1001-0505.2017.02.031]
 Zuo Xiaobao,Jiang Kang,Feng Yuxiang,et al.Analysis on depassivation process and chloride ion threshold of passive film on surface of ductile iron in simulated pore solution[J].Journal of Southeast University (Natural Science Edition),2017,47(4):392.[doi:10.3969/j.issn.1001-0505.2017.02.031]
[2]艾志勇,蒋金洋,孙伟,等.Cr8Ni2合金耐蚀钢筋在不同pH值模拟混凝土孔溶液中的钝化行为[J].东南大学学报(自然科学版),2016,46(1):152.[doi:10.3969/j.issn.1001-0505.2016.01.025]
 Ai Zhiyong,Jiang Jinyang,Sun Wei,et al.Passive behaviour of Cr8Ni2 alloy corrosion-resistant steel in simulating concrete pore solutions with different pH values[J].Journal of Southeast University (Natural Science Edition),2016,46(4):152.[doi:10.3969/j.issn.1001-0505.2016.01.025]

备注/Memo

备注/Memo:
收稿日期: 2016-01-09.
作者简介: 艾志勇(1987—),男,博士生;蒋金洋(联系人),男,博士,教授,博士生导师,jiangjinyang16@163.com.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2015CB655100)、国家自然科学基金资助项目(51278098, 51308111)、江苏省产学研联合创新资金——前瞻性联合研究资助项目(BY2013091).
引用本文: 艾志勇,蒋金洋,孙伟,等.新型合金耐蚀钢筋Cr10Mo1的阴极行为及其阻抑机制[J].东南大学学报(自然科学版),2016,46(4):872-878. DOI:10.3969/j.issn.1001-0505.2016.04.033.
更新日期/Last Update: 2016-07-20