[1]王宁,宋海洋,魏家行,等.高功率单相桥模块封装热特性研究及优化[J].东南大学学报(自然科学版),2016,46(5):928-933.[doi:10.3969/j.issn.1001-0505.2016.05.005]
 Wang Ning,Song Haiyang,Wei Jiaxing,et al.Investigation and optimization of thermal characteristics for high power single phase bridge module[J].Journal of Southeast University (Natural Science Edition),2016,46(5):928-933.[doi:10.3969/j.issn.1001-0505.2016.05.005]
点击复制

高功率单相桥模块封装热特性研究及优化()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第5期
页码:
928-933
栏目:
机械工程
出版日期:
2016-09-20

文章信息/Info

Title:
Investigation and optimization of thermal characteristics for high power single phase bridge module
作者:
王宁1宋海洋1魏家行1刘斯扬1孙伟锋1朱久桃2余传武2朱袁正2
1东南大学国家专用集成电路系统工程技术研究中心, 南京210096; 2无锡新洁能股份有限公司, 无锡214131
Author(s):
Wang Ning1 Song Haiyang1 Wei Jiaxing1 Liu Siyang1 Sun Weifeng1Zhu Jiutao2 Yu Chuanwu2 Zhu Yuanzheng2
1National ASIC System Engineering Technology Research Center, Southeast University, Nanjing 210096, China
2Wuxi NCE Power Co., Ltd., Wuxi 214131, China
关键词:
单相桥模块 高功率 热阻 功率端子 引线
Keywords:
single phase bridge module high power thermal resistance power terminals bonding wires
分类号:
TB482.2
DOI:
10.3969/j.issn.1001-0505.2016.05.005
摘要:
为了提升高功率应用下单相桥模块的热可靠性,利用有限元仿真分析方法,研究了模块的封装热特性,并与实测结果进行比较,验证了模型求解的准确性和可靠性.结果表明:单相桥模块结壳热阻为0.185 3 ℃/W,封装7层结构中直接覆铜基板(DBC)陶瓷层占总热阻的52.12%,将DBC陶瓷绝缘材料替换为高导热率绝缘材料能够有效减小结壳热阻;在高功率应用条件下,由功率端子和引线寄生引起的焦耳热将进一步导致结温升高及模块性能下降.在此基础上,具体分析了不同功率端子、引线模型对模块封装热特性的影响.分析表明,采用铜柱型功率端子和增大近端子侧(高电流密度区域)的引线密度或截面直径均可降低结温,从而有助于提高单相桥模块的过电流能力和热可靠性.
Abstract:
In order to improve the thermal reliability of single phase bridge module for high power applications, the thermal characteristics of the module are investigated by using finite elements simulation and analysis methods. The accuracy and reliability of simulation analysis are verified by comparing with the measured results.The results show that the junction-to-case thermal resistance of the power module is 0.185 3 ℃/W, while the insulated ceramic layer of direct bonding copper(DBC)among the 7-layer structure of the module package occupies 52.12% of it. The solution replacing the initial ceramic layer by the higher thermal conductivity materials can reduce the junction-to-case thermal resistance effectively. Moreover, the parasitic joule heat induced by power terminals and bonding wires will further increase the junction temperature and make the module suffer from more degradation. The influences of different power terminals and bonding wires on the thermal characteristics of the module are analyzed specifically. Both adopting copper pillar power terminals and enlarging the density or cross sectional areas of bonding wires near the terminal side(high current density region)can reduce junction temperature. As a result, the thermal reliability and current capability of single phase bridge power module can be improved.

参考文献/References:

[1] 邓隐北, 张慧敏. 功率半导的现状与展望[J]. 电源世界, 2016(2):39-42.
  Deng Yinbei, Zhang Huimin. The present situation and prospect of power semiconductor[J]. The World of Power Supply, 2016(2): 39-42.(in Chinese)
[2] 刘漾,廖明亮, 刘国亮. 国外微波功率模块现状与发展[J]. 电子信息对抗技术, 2016, 31(1):70-73.
  Liu Yang, Liao Mingliang, Liu Guoliang. Present situation and the development of foreign microwave power module[J]. Electronic Information Warfare Technology, 2016, 31(1): 70-73.(in Chinese)
[3] 殷炯, 翁星方, 何为国,等. IGBT功率模块散热系统设计与分析[J]. 机电信息, 2014(15):146-148.
  Yin Jiong, Weng Xingfang, He Weiguo, et al. The design and analysis of IGBT power module cooling system[J]. Mechanical and Electrical Information, 2014(15): 146-148.(in Chinese)
[4] Ma S, Wang H, Liang B, et al. Design and research on power decoupling module in single-phase H-bridge inverter[C]//2015 IEEE International Conference on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration(ICIICII). Wuhan, China, 2015: 259-262.DOI:10.1109/iciicii.2015.146.
[5] 王彦刚, Jones Steve, 刘国友. 功率IGBT模块的可靠性分析[J]. 机车电传动, 2013(1): 5-9.
  Wang Yangang, Jones Steve, Liu Guoyou. Reliability analysis of power IGBT module[J]. Electric Drive for Locomotives, 2013(1): 5-9.(in Chinese)
[6] 于冰, 张頔, 刘斯扬,等. 基于PDP扫描驱动芯片的LQFP封装热特性研究[J]. 电子器件, 2013, 36(4):437-442. DOI:10.3969/j.issn.1005-9490.2013.04.002.
  Yu Bing, Zhang Di, Liu Siyang, et al. LQFP encapsulation thermal characteristics research based on PDP scan driver chip[J]. Electron Device, 2013, 36(4): 437-442.DOI:10.3969/j.issn.1005-9490.2013.04.002.(in Chinese)
[7] 李汝冠,周斌,许炜,等. 基于结构函数的大功率整流管封装内部热阻分析[J]. 电子元件与材料, 2016, 35(1): 40-43,67. DOI:10.14106/j.cnki.1001-2028.2016.01.010.
  Li Ruguan, Zhou Bin, Xu Wei, et al. Encapsulating internal thermal resistance analysis of high power rectifier based on structure function[J]. Electronic Components and Materials, 2016, 35(1): 40-43,67. DOI:10.14106/j.cnki.1001-2028.2016.01.010.(in Chinese)
[8] JEDEC Solid State Technology Association.JEDEC.51-12 Guidelines for reporting and using electronic package thermal information[S]. Arlington: JEDEC Solid State Technology Association, 2012.
[9] Ishiko M, Usui M, Ohuchi T, et al. Design concept for wire-bonding reliability improvement by optimizing position in power devices[J]. Microelectronics Journal, 2006, 37(3):262-268.DOI:10.1016/j.mejo.2005.09.015.
[10] 沈军, 马骏, 刘伟强. 一种接触热阻的数值计算方法[J]. 上海航天, 2002, 19(4): 33-36.DOI:10.3969/j.issn.1006-1630.2002.04.008.
  Shen Jun, Ma Jun, Liu Weiqiang. A numerical calculation method for contact thermal resistance[J]. Aerospace Shanghai, 2002, 19(4): 33-36.DOI:10.3969/j.issn.1006-1630.2002.04.008.(in Chinese)
[11] Younes Shabany. 传热学——电力电子器件热管理(国际电气工程先进技术译丛)[M]. 北京:机械工业出版社, 2013: 89-90.
[12] Dirk S, Heinz P, Liu C, et al. Transient dual interface measurement — A new JEDEC standard for the measurement of the junction-to-case thermal resistance [C]//Annual IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, CA, USA, 2011: 222-229.
[13] JEDEC Solid State Technology Association. JEDEC.51-14 Transient dual interface test method for the measurement of thermal resistance junction-to-case of semiconductor devices with heat flow through a single path[S]. Arlington: JEDEC Solid State Technology Association, 2010.
[14] Erwin I V A, Paek S H, Lee T K. Package design optimization for electrical performance of a power module using finite element analysis[C]//IEEE 10th Electronics Packaging Technology Conference. Singapore, 2008: 1023-1027.DOI:10.1109/eptc.2008.4763564.
[15] Kulkarni S, Arifeen S, Patterson B, et al. Evaluation of ceramic substrates for high power and high temperature applications [C]//2011 IMAPS/ACerS 7th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies. San Diego, CA, USA, 2011: 199-206.

备注/Memo

备注/Memo:
收稿日期: 2016-03-23.
作者简介: 王宁(1991—),男,硕士生;孙伟锋(联系人),男,博士,教授,博士生导师,swffrog@seu.edu.cn.
基金项目: 港澳台国际合作计划资助项目(2014DFH10190)、中国博士后基金资助项目(2015M580376)、江苏省博士后科研资助计划资助项目(1501010A).
引用本文: 王宁,宋海洋,魏家行,等.高功率单相桥模块封装热特性研究及优化[J].东南大学学报(自然科学版),2016,46(5):928-933. DOI:10.3969/j.issn.1001-0505.2016.05.005.
更新日期/Last Update: 2016-09-20