[1]孙瀚,张雄,王保平,等.基于最优化少量电极的思维任务脑机接口[J].东南大学学报(自然科学版),2016,46(5):934-938.[doi:10.3969/j.issn.1001-0505.2016.05.006]
 Sun Han,Zhang Xiong,Wang Baoping,et al.Optimal-less channel based mental task brain-computer interfaces[J].Journal of Southeast University (Natural Science Edition),2016,46(5):934-938.[doi:10.3969/j.issn.1001-0505.2016.05.006]
点击复制

基于最优化少量电极的思维任务脑机接口()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第5期
页码:
934-938
栏目:
自动化
出版日期:
2016-09-20

文章信息/Info

Title:
Optimal-less channel based mental task brain-computer interfaces
作者:
孙瀚1张雄1王保平1Bruce J Gluckman2刘嘉阳2仲雪飞1樊兆雯1张玉1张春1
1东南大学电子科学与工程学院, 南京 210096; 2宾夕法尼亚州立大学工程学院, 美国斯泰特克利奇 16803
Author(s):
Sun Han1 Zhang Xiong1 Wang Baoping1 Bruce J Gluckman2 Liu Jiayang2Zhong Xuefei1 Fan Zhaowen1 Zhang Yu1 Zhang Chun1
1School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
2College of Engineering, Pennsylvania State University, State College 16803, USA
关键词:
思维任务 脑机接口 最优化少量电极 共空间模式 熵准则
Keywords:
mental task brain-computer interface optimal-less channel common spatial pattern entropy criterion
分类号:
TP274
DOI:
10.3969/j.issn.1001-0505.2016.05.006
摘要:
为减少脑机接口的电极数量,采用基于最优化少量电极的共空间模式(CSP)算法提取不同思维任务下的脑电信号(EEG)特征值.首先,根据事件相关(去)同步化现象观察时频特性;然后,运用熵准则对单个电极进行可分性度量;最后,根据可分性排序,利用基于最优化少量电极的CSP算法和支持向量机算法对不同电极组合的特征值进行提取和分类,得出最优化的电极组合. 结果表明,进行心算和想像空间旋转2种思维任务时被试的EEG信号在顶叶和枕叶区域存在明显的能量差异,6个被试可分性最高的电极均位于这2个区域;与传统的EEG信号处理算法相比,基于最优化少量电极的算法可以使系统使用的电极数减少至3.3个,并且分类正确率提高5.4%.因此,采用基于最优化少量电极的算法可以减少电极数目,改善思维任务脑机接口的性能.
Abstract:
To decrease the number of channels of brain-computer interfaces, the optimal-less channel based common spatial pattern(CSP)algorithm is proposed to extract the eigenvalues of the electroencephalography(EEG)features of different mental tasks. First, the temporal-frequency features are represented by event-related(de)synchronization. Then, the separability of each individual channel is measured by entropy criterion. Finally, according to the rank of the separability, the eigenvalues of different channel groups are extracted and classified by the optimal-less channel CSP algorithm and the support vector machine algorithm to obtain the optimal channels. The results demonstrate that during the mental arithmetic task and the spatial rotation task, the EEG signals exhibit significant different powers in central and occipital lobe. The electrodes with the highest separability of all the subjects are located in these two areas. Compared with the traditional signal processing algorithm of EEG, the optimal-less channels based algorithm can reduce the number of the channels to 3.3 and increase the classification accuracy by 5.4%. Therefore, the optimal-less channel based algorithm can reduce the number of channels and improve the performance of the mental task brain-computer interfaces.

参考文献/References:

[1] Hill N J, Ricci E, Haider S, et al. A practical, intuitive brain-computer interface for communicating “yes” or “no” by listening[J]. J Neural Eng, 2014, 11(3):035003. DOI:10.1088/1741-2560/11/3/035003.
[2] Ahn M, Lee M, Choi J, et al. A review of brain-computer interface games and an opinion survey from researchers, developers and users [J]. Sensors, 2014, 14(8): 14601-14633. DOI:10.3390/s140814601.
[3] Wang L, Zhang X, Zhang Y. Extending motor imagery by speech imagery for brain-computer interface[C]//35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC). Osaka, Japan, 2013: 7056-7059. DOI:10.1109/EMBC.2013.6611183.
[4] Keirn Z A, Aunon J I. A new mode of communication between man and his surroundings[J]. IEEE Trans Biomed Eng, 1990, 37(12):1209-1214. DOI:10.1109/10.64464.
[5] Iacoviello D, Petracca A, Spezialetti M, et al. A real-time classification algorithm for EEG-based BCI driven by self-induced emotions[J]. Comput Methods Programs Biomed, 2015, 122(3):293-303. DOI:10.1016/j.cmpb.2015.08.011.
[6] Chai R, Ling S H, Hunter G P, et al. Mental non-motor imagery tasks classifications of brain computer interface for wheelchair commands using genetic algorithm-based neural network[C]//The 2012 International Joint Conference on Neural Networks(IJCNN). Brisbane,Australia, 2012: 1-7.DOI:10.1109/ijcnn.2012.6252499.
[7] Jamal W, Das S, Maharatna K, et al. Brain connectivity analysis from EEG signals using stable phase-synchronized states during face perception tasks[J]. Physica A: Statistical Mechanics and its Applications, 2015, 434:273-295. DOI:10.1016/j.physa.2015.03.087.
[8] Pfurtscheller G. Event-related synchronization(ERS): an electrophysiological correlate of cortical areas at rest[J]. Electroencephalogr Clin Neurophysiol, 1992, 83(1):62-69. DOI:10.1016/0013-4694(92)90133-3.
[9] Wang H, Xu D. Comprehensive common spatial patterns with temporal structure information of EEG data: Minimizing nontask related EEG component[J]. IEEE Trans Biomed Eng, 2012, 59(9):2496-2505. DOI:10.1109/TBME.2012.2205383.
[10] 王陆洲. 一种利用心算任务增强脑电信号特征的脑-机接口研究[D]. 天津:天津医科大学生物医学工程学院, 2013.
[11] Chang C C, Lin C J. LIBSVM: A library for support vector machines [EB/OL].(2015-12-14)[2016-01-10]. http://www. csie. ntu. edu. tw/~ cjlin/libsvm.
[12] Geronimo A, Stephens H E, Schiff S J, et al. Acceptance of brain-computer interfaces in amyotrophic lateral sclerosis[J]. Amyotroph Lateral Scler Frontotemporal Degener, 2015, 16(3/4):258-264. DOI:10.3109/21678421.2014.969275.

相似文献/References:

[1]王力,张雄,仲雪飞,等.时频分析在语言想像脑机接口中的应用[J].东南大学学报(自然科学版),2014,44(6):1126.[doi:10.3969/j.issn.1001-0505.2014.06.006]
 Wang Li,Zhang Xiong,Zhong Xuefei,et al.Application of time-frequency analysis in speech imagery based brain-computer interfaces[J].Journal of Southeast University (Natural Science Edition),2014,44(5):1126.[doi:10.3969/j.issn.1001-0505.2014.06.006]

备注/Memo

备注/Memo:
收稿日期: 2016-01-14.
作者简介: 孙瀚(1990—),男,博士生;张雄(联系人),男,博士,教授,博士生导师,zxbell@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61405033,61505028)、国家重点基础研究发展计划(973计划)资助项目(2010CB327705)、高等学校学科创新引智计划资助项目(B07027)、江苏省自然科学基金资助项目(BK20130629).
引用本文: 孙瀚,张雄,王保平,等.基于最优化少量电极的思维任务脑机接口[J].东南大学学报(自然科学版),2016,46(5):934-938. DOI:10.3969/j.issn.1001-0505.2016.05.006.
更新日期/Last Update: 2016-09-20