[1]杨锦江,曹鹏,杨军.面向分组密码算法的高面积效率可重构架构[J].东南大学学报(自然科学版),2016,46(5):939-944.[doi:10.3969/j.issn.1001-0505.2016.05.007]
 Yang Jinjiang,Cao Peng,Yang Jun.Reconfigurable architecture with high area efficiency for block cipher algorithms[J].Journal of Southeast University (Natural Science Edition),2016,46(5):939-944.[doi:10.3969/j.issn.1001-0505.2016.05.007]
点击复制

面向分组密码算法的高面积效率可重构架构()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第5期
页码:
939-944
栏目:
电子科学与工程
出版日期:
2016-09-20

文章信息/Info

Title:
Reconfigurable architecture with high area efficiency for block cipher algorithms
作者:
杨锦江曹鹏杨军
东南大学国家专用集成电路系统工程技术研究中心, 南京 210096
Author(s):
Yang Jinjiang Cao Peng Yang Jun
National ASIC System Engineering Technology Research Center, Southeast University, Nanjing 210096, China
关键词:
分组密码算法 粗粒度可重构架构 层次化配置 面积效率
Keywords:
block cipher algorithm coarse-grained reconfigurable architecture hierarchical configuration organization area efficiency
分类号:
TN302
DOI:
10.3969/j.issn.1001-0505.2016.05.007
摘要:
为了提升安全应用中分组密码算法的面积效率,提出了一种基于粗粒度可重构计算的硬件架构.在可重构架构设计过程中采用了2种优化方案,即利用Benes网络优化可重构计算阵列的层间互联和基于配置信息的使用频度优化配置信息的组织方式.实验结果表明:采用基于Benes网络的层间互联方案后,可重构阵列中层间互联的面积开销减少了51.61%;采用基于使用频度的配置信息层次化组织方式后, AES分组密码算法和DES分组密码算法的配置时间分别缩短了80%和88%,配置时间占总时间的百分数分别下降了42%和39%.这2种分组密码算法在该可重构架构上实现的面积效率为同类架构的3.95和1.51倍.因此,所提的2种优化方案能够有效降低面积开销,提高可重构架构的性能,有助于分组密码算法高面积效率的实现.
Abstract:
A coarse-grained reconfigurable architecture is proposed to improve the area efficiency of block cipher algorithms in the security applications. Two schemes are used to optimize the architecture. One is using the Benes network to optimize the connection between rows of the reconfigurable architecture, and the other is optimizing the context organization according to the use frequency. The experimental results show that the area cost is reduced by 51.61% after using the Benes network as the optimization of row connection. After using the hierarchical context organization based on the using frequency, the configuration time of the AES(advanced encryption standard)block cipher algorithm and that of the DES(data encryption standard)block cipher algorithm decrease by 80% and 88%, and the proportions of their configuration time in the total time decrease 42% and 39%, respectively. The area efficiencies of these two block cipher algorithms implemented on the proposed reconfigurable architecture are 3.95 and 1.51 times of the similar architectures, respectively. Therefore, the two proposed schemes can effectively decrease the area cost, improve the performance of the reconfigurable architecture and favor the efficient area implementation of block cipher algorithms.

参考文献/References:

[1] Liu B, Baas B M. Parallel AES encryption engines for many-core processor arrays[J]. IEEE Transactions on Computers, 2013, 62(3):536-547. DOI:10.1109/tc.2011.251.
[2] Mathew S K, Sheikh F, Kounavis M, et al. 53 Gbps native GF(24)2 composite-field AES-encrypt/decrypt accelerator for content-protection in 45 nm high-performance microprocessors[J]. IEEE J Solid-State Circuits, 2011, 46(4):767-776. DOI:10.1109/jssc.2011.2108131.
[3] Hartenstein R. A decade of reconfigurable computing: A visionary retrospective[C]//Proceedings of the Conference on Design, Automation and Test in Europe. Munich, Germany, 2001:642-649. DOI:10.1109/date.2001.915091.
[4] Liu Q, Xu Z, Yuan Y. A 66.1 Gbps single-pipeline AES on FPGA[C]//2013 International Conference on Field-Programmable Technology. Kyoto,Japan, 2013: 378-381. DOI:10.1109/fpt.2013.6718392.
[5] Wang Y, Ha Y. FPGA-based 40.9-Gbits/s masked AES with area optimization for storage area network[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60(1):36-40. DOI:10.1109/tcsii.2012.2234891.
[6] Dai Z B, Yang X H, Ren Q, et al. The research and design of reconfigurable cipher processing architecture targeted at block cipher[C]//7th International Conference on ASIC ASICON ’07. Guilin, China, 2007:814-817.DOI:10.1109/icasic.2007.4415755.
[7] Yang X, Dai Z, Zhang Y, et al. The research and design of reconfigurable computing for block cipher[J]. Journal of Electronics(China), 2008, 25(4):503-510. DOI:10.1007/s11767-006-0279-y.
[8] Garcia A, Berekovic M, Vander A T. Mapping of the AES cryptographic algorithm on a coarse-grain reconfigurable array processor[C]//International Conference on Application-Specific Systems, Architectures and Processors. Leuven,Belgium, 2008:245-250. DOI:10.1109/asap.2008.4580186.
[9] Wang M Y, Su C P, Horng C L, et al. Single- and multi-core configurable AES architectures for flexible security[J]. IEEE Transactions on Very Large Scale Integration(VLSI)Systems, 2010, 18(4):541-552. DOI:10.1109/tvlsi.2009.2013231.
[10] Elbirt A J, Paar C. An instruction-level distributed processor for symmetric-key cryptography[J]. IEEE Transactions on Parallel and Distributed Systems, 2005,16(5):468-480. DOI:10.1109/TPDS.2005.51.
[11] Park H W, Kim W, Yoo D, et al. A scalable scheduling algorithm for coarse-grained reconfigurable architecture[C]//IEEE International Conference on Consumer Electronics(ICCE). Las Vegas, Nevada,USA, 2013:542-543.
[12] Elbirt A J, Paar C. An instruction-level distributed processor for symmetric-key cryptography[J]. IEEE Trans Parallel Distrib Syst, 2005, 16(5):468-480. DOI:10.1109/tpds.2005.51.
[13] Sayilar G, Chiou D. Cryptoraptor:High throughput reconfigurable cryptographic processor[C]//2014 IEEE/ACM International Conference on Computer-Aided Design. Los Angeles, CA,USA, 2014:154-161. DOI:10.1109/iccad.2014.7001346.

备注/Memo

备注/Memo:
收稿日期: 2016-04-28.
作者简介: 杨锦江(1986—),男,博士生;杨军(联系人),男,博士,教授,博士生导师,dragon@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61404028).
引用本文: 杨锦江,曹鹏,杨军.面向分组密码算法的高面积效率可重构架构[J].东南大学学报(自然科学版),2016,46(5):939-944. DOI:10.3969/j.issn.1001-0505.2016.05.007.
更新日期/Last Update: 2016-09-20