[1]袁志山,蔺卡宾,杨浩杰,等.SiN薄膜纳米孔芯片制造工艺实验研究[J].东南大学学报(自然科学版),2016,46(5):977-981.[doi:10.3969/j.issn.1001-0505.2016.05.013]
 Yuan Zhishan,Lin Kabin,Yang Haojie,et al.Experimental research on fabrication of silicon nitride film nanopore device[J].Journal of Southeast University (Natural Science Edition),2016,46(5):977-981.[doi:10.3969/j.issn.1001-0505.2016.05.013]
点击复制

SiN薄膜纳米孔芯片制造工艺实验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第5期
页码:
977-981
栏目:
电路与系统
出版日期:
2016-09-20

文章信息/Info

Title:
Experimental research on fabrication of silicon nitride film nanopore device
作者:
袁志山12蔺卡宾1杨浩杰1纪安平1沙菁1谢骁3倪中华1易红1陈云飞1
1 东南大学江苏省微纳生物医疗器械设计与制造重点实验室, 南京211189; 2广东工业大学机电工程学院, 广州 510006; 3东南大学MEMS教育部重点实验室, 南京 210096
Author(s):
Yuan Zhishan12 Lin Kabin1 Yang Haojie1 Ji Anping1 Sha Jingjie1Xie Xiao3 Ni Zhonghua1 Yi Hong1 Chen Yunfei1
1Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
2School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
3Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
氮化硅 纳米孔 聚焦离子束 电子束
Keywords:
silicon nitride nanopore focused ion beam electron beam
分类号:
TN4
DOI:
10.3969/j.issn.1001-0505.2016.05.013
摘要:
针对第3代基因测序的需求,提出一种大规模的氮化硅薄膜纳米孔芯片制造技术.通过测量不同膜厚氮化硅薄膜的应力,选择适用于纳米孔制造的最佳厚度为100 nm.采用低压化学气相沉积、反应离子刻蚀和释放工艺制备出高成品率的氮化硅纳米薄膜芯片.在此基础上,使用聚焦离子束和高能电子束实现氮化硅薄膜纳米孔的制造.研究聚焦离子束刻蚀时间、电流与纳米孔直径的关系.实验结果表明,采用聚焦离子束将氮化硅薄膜的厚度减薄至40 nm以下时,制作纳米孔的效果更好.采用聚焦离子束制造的氮化硅薄膜纳米孔最小直径为26 nm,而采用电子束制备的最小直径可达3.5 nm.该方法为基于固体纳米孔的DNA测序检测提供了有力的支撑.
Abstract:
Aiming at the requirements of the third generation gene sequence technique, a fabrication method for large scale silicon nitride(SiN)film nanopore device is presented. First, 100 nm is chosen as the optimal thickness suitable for fabrication of nanopore through measuring the stress of SiN nanofilms with different thickness. High yield SiN nanofilm chips are manufactured by using low pressure chemical vapor deposition(LP-CVD), reactive ion etching(RIE)and release process. Then, focused ion beam(FIB)and high energy electron beam are used to manufacture SiN film nanopore on SiN nanofilm chips after process optimization. Relationships between FIB etching time, beam current and the diameter of nanopore are researched. The experimental results show that when the thickness of SiN is reduced to below 40 nm by FIB milling,the fabrication effect of nanopore is better. The minimum diameters of SiN film nanopore for FIB and electron beam are 26 and 3.5 nm, respectively. The proposed method provides strong support for DNA sequencing based on solid-state nanopore.

参考文献/References:

[1] Taniguchi M. Selective multidetection using nanopores[J]. Analytical Chemistry, 2015, 87(1): 188-199.DOI:10.1021/ac504186m.
[2] Deamer D W, Akeson M. Nanopores and nucleic acids: Prospects for ultrarapid sequencing[J].Trends in Biotechnology, 2000, 18(4): 147-151.DOI:10.1016/s0167-7799(00)01426-8.
[3] Wu M Y, Krapf D, Zandbergen M, et al. Formation of nanopores in a SiN/SiO2 membrane with an electron beam[J]. Applied Physics Letters, 2005, 87(11): 113106.DOI:10.1063/1.2043247.
[4] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(24): 13770-13773.DOI:10.1073/pnas.93.24.13770.
[5] Clarke J, Wu H C, Jayasinghe L, et al. Continuous base identification for single-molecule nanopore DNA sequencing[J]. Nature Nanotechnology, 2009, 4(4):265-270.DOI:10.1038/nnano.2009.12.
[6] Wanunu M, Morrison W, Rabin Y, et al. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient[J]. Nature Nanotechnology, 2010, 5(2):160-165.DOI:10.1038/nnano.2009.379.
[7] Keyser U F, Koeleman B N, van Dorp S, et al. Direct force measurements on DNA in a solid-state nanopore[J]. Nature Physics, 2006, 2(7): 473-477. DOI:10.1038/nphys344.
[8] Wanunu M, Dadosh T, Ray V, et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors[J]. Nature Nanotechnology, 2010, 5(11):807-814.DOI:10.1038/nnano.2010.202.
[9] 黄庆安.微机电系统基础[M].北京:机械工业出版社,2006: 226-230.
[10] 陈迪, 刘景全, 朱军,等.微加工导论[M].北京:电子工业出版社,2006:53-55.

相似文献/References:

[1]李堃,袁志山,纪安平,等.受限高浓度电解质溶液的电动力学输运[J].东南大学学报(自然科学版),2016,46(5):972.[doi:10.3969/j.issn.1001-0505.2016.05.012]
 Li Kun,Yuan Zhishan,Ji Anping,et al.Electrokinetics transport of confined electrolyte solution in high concentration[J].Journal of Southeast University (Natural Science Edition),2016,46(5):972.[doi:10.3969/j.issn.1001-0505.2016.05.012]
[2]马建,王欣,李堃,等.基于氮化硅薄膜纳米孔制备及DNA分子检测[J].东南大学学报(自然科学版),2017,47(2):265.[doi:10.3969/j.issn.1001-0505.2017.02.012]
 Ma Jian,Wang Xing,Li Kun,et al.Fabrication of Si3N4 nanopore for DNA detection[J].Journal of Southeast University (Natural Science Edition),2017,47(5):265.[doi:10.3969/j.issn.1001-0505.2017.02.012]

备注/Memo

备注/Memo:
收稿日期: 2016-01-10.
作者简介: 袁志山(1987—),男,博士,yzshan044@163.com.
基金项目: 国家自然科学基金资助项目(51435003, 51375092, 51302037).
引用本文: 袁志山,蔺卡宾,杨浩杰,等.SiN薄膜纳米孔芯片制造工艺实验研究[J].东南大学学报(自然科学版),2016,46(5):977-981. DOI:10.3969/j.issn.1001-0505.2016.05.013.
更新日期/Last Update: 2016-09-20