[1]金贤建,殷国栋,陈南,等.分布式驱动电动汽车的平方根容积卡尔曼滤波状态观测[J].东南大学学报(自然科学版),2016,46(5):992-996.[doi:10.3969/j.issn.1001-0505.2016.05.016]
 Jin Xianjian,Yin Guodong,Chen Nan,et al.State observation of distributed drive electric vehicle using square root cubature Kalman filter[J].Journal of Southeast University (Natural Science Edition),2016,46(5):992-996.[doi:10.3969/j.issn.1001-0505.2016.05.016]
点击复制

分布式驱动电动汽车的平方根容积卡尔曼滤波状态观测()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第5期
页码:
992-996
栏目:
交通运输工程
出版日期:
2016-09-20

文章信息/Info

Title:
State observation of distributed drive electric vehicle using square root cubature Kalman filter
作者:
金贤建12殷国栋1陈南1陈建松1张宁1
1东南大学机械工程学院, 南京 211189; 2俄亥俄州立大学机械与航空系, 美国哥伦布 43210
Author(s):
Jin Xianjian12 Yin Guodong1 Chen Nan 1 Chen Jiansong1 Zhang Ning1
1School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus 43210, USA
关键词:
电动汽车 状态观测 平方根容积卡尔曼滤波 车辆动力学
Keywords:
electric vehicles state observation square root cubature Kalman filter vehicle dynamics
分类号:
U461;TP273
DOI:
10.3969/j.issn.1001-0505.2016.05.016
摘要:
针对车辆动力学系统状态估计的非线性问题,引入非线性动态Dugoff轮胎模型来构建包括纵向、侧向、横摆和侧倾等8自由度的非线性车辆动力学状态估计系统.在融合车载多传感器信息的基础上设计了车辆动力学的平方根容积卡尔曼非线性滤波状态观测器,对质心侧偏角、轮胎侧向力等关键状态进行观测.在Matlab/Simulink环境中搭建了Simulink-Carsim分布式驱动电动汽车系统状态估计联合仿真平台,采用双移线工况对观测器的可行性和有效性进行仿真验证.结果表明:传统的扩展式卡尔曼滤波状态观测器在车辆经历高侧向加速度过程中的观测值大幅偏离车辆运行状态的真实值,而设计的平方根容积卡尔曼非线性滤波状态观测器在整个双移线仿真工况下观测结果平稳,能实时反映车辆动力学系统的真实非线性运行状态,具有更小的观测误差和更高的观测精度.
Abstract:
To deal with nonlinear challenges on vehicle dynamics state estimation, the eight-DOF(degree of freedom)nonlinear vehicle dynamics state estimation system, including longitudinal, lateral, yaw, and roll motions was constructed by introducing a nonlinear dynamics Dugoff tire model.Based on multi-sensor data fusion, the nonlinear observer with square root cubature Kalman filter was designed to estimate some key parameters, such as lateral tire-road forces and vehicle sideslip angle. Then the co-simulation platform with Simulink-Carsim for the estimated system of distributed drive electric vehicles was built in Matlab/Simulink environment.Simulations for double lane change manoeuvre were carried out to evaluate the feasibility and the effectiveness of the observer. The results show that the observed values with traditional extended Kalman filter state observer deviate from the real values of the vehicle running state when vehicles deliver high lateral acceleration,while the nonlinear observer with the proposed square root cubature Kalman filter has smooth results and reflects the real-time nonlinear vehicle dynamics state during double lane change manoeuvre. And it possesses smaller observer errors and higher observation precision.

参考文献/References:

[1] Geng C, Mostefai L, Denaï M, et al.Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer[J]. IEEE Transactions on Industrial Electronics, 2009, 56(5): 1411-1419.
[2] Huang X, Wang J. Lightweight vehicle control-oriented modeling and payload parameter sensitivity analysis[J]. IEEE Transactions on Vehicular Technology, 2011, 60(5): 1999-2011. DOI:10.1109/tvt.2011.2148135.
[3] Nam K, Oh S, Fujimoto H, et al. Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches[J]. IEEE Transactions on Industrial Electronics, 2013, 60(3): 988-1000. DOI:10.1109/tie.2012.2188874.
[4] Baffet G, Charara A, Lechner D, et al. Experimental evaluation of observers for tire-road forces, sideslip angle and wheel cornering stiffness[J]. Vehicle System Dynamics, 2008, 46(6): 501-520.DOI:10.1080/00423110701493963.
[5] Zong C, Hu D, Zheng H. Dual extended Kalman filter for combined estimation of vehicle state and road friction[J]. Chinese Journal of Mechanical Engineering, 2013, 26(2): 313-324.DOI:10.3901/cjme.2013.02.313.
[6] Chu W, Luo Y, Dai Y, et al. In-wheel motor electric vehicle state estimation by using unscented particle filter[J]. International Journal of Vehicle Design, 2015, 67(2): 115-136.DOI:10.1504/ijvd.2015.068134.
[7] Antonov S, Fehn A, Kugi A. Unscented Kalman filter for vehicle state estimation[J]. Vehicle System Dynamics, 2011, 49(9): 1497-1520.DOI:10.1080/00423114.2010.527994.
[8] Guo H, Chen H, Xu F, et al. Implementation of EKF for vehicle velocities estimation on FPGA[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3823-3835.DOI:10.1109/tie.2012.2208436.
[9] Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269.DOI:10.1109/tac.2009.2019800.
[10] Tang X, Liu Z, Zhang J. Square-root quaternion cubature Kalman filtering for spacecraft attitude estimation[J]. Acta Astronautica, 2012, 76: 84-94.DOI:10.1016/j.actaastro.2012.02.009.

相似文献/References:

[1]徐晓明,何仁.高速行驶时电动汽车动力舱自然进风散热分析[J].东南大学学报(自然科学版),2013,43(3):520.[doi:10.3969/j.issn.1001-0505.2013.03.014]
 Xu Xiaoming,He Ren.Analysis of heat dissipation by natural wind in power cabin of electric vehicle at high speed[J].Journal of Southeast University (Natural Science Edition),2013,43(5):520.[doi:10.3969/j.issn.1001-0505.2013.03.014]

备注/Memo

备注/Memo:
收稿日期: 2016-02-03.
作者简介: 金贤建(1986—),男,博士生;殷国栋(联系人),男,博士,教授,博士生导师,ygd@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2016YFB0100906)、国家自然科学基金资助项目(51575103,51375086)、东南大学优秀博士学位论文基金资助项目(YBJJ1429).
引用本文: 金贤建,殷国栋,陈南,等.分布式驱动电动汽车的平方根容积卡尔曼滤波状态观测[J].东南大学学报(自然科学版),2016,46(5):992-996. DOI:10.3969/j.issn.1001-0505.2016.05.016.
更新日期/Last Update: 2016-09-20