[1]代洪亮,吕锡武,高琪娜.基于诱导HAP结晶的强化生物除磷工艺厌氧上清液中磷的回收[J].东南大学学报(自然科学版),2016,46(5):1020-1026.[doi:10.3969/j.issn.1001-0505.2016.05.021]
 Dai Hongliang,Lü Xiwu,Gao Qina.Phosphorus recovery from anaerobic supernatant of EBPR process based on HAP crystallization[J].Journal of Southeast University (Natural Science Edition),2016,46(5):1020-1026.[doi:10.3969/j.issn.1001-0505.2016.05.021]
点击复制

基于诱导HAP结晶的强化生物除磷工艺厌氧上清液中磷的回收()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第5期
页码:
1020-1026
栏目:
环境科学与工程
出版日期:
2016-09-20

文章信息/Info

Title:
Phosphorus recovery from anaerobic supernatant of EBPR process based on HAP crystallization
作者:
代洪亮吕锡武高琪娜
东南大学能源与环境学院, 南京210096; 无锡太湖水环境工程研究中心, 无锡214135
Author(s):
Dai Hongliang Lü Xiwu Gao Qina
School of Energy and Environment, Southeast University, Nanjing 210096, China
ERC Taihu Lake Water Environment, Wuxi 214135, China
关键词:
磷回收 厌氧上清液 诱导结晶 羟基磷酸钙
Keywords:
phosphorus recovery anaerobic supernatant induced crystallization hydroxyapatite
分类号:
X703.1
DOI:
10.3969/j.issn.1001-0505.2016.05.021
摘要:
以方解石为晶种,采用诱导羟基磷酸钙(HAP)结晶的方式在气曝式结晶反应柱内回收强化生物除磷工艺厌氧沉淀池上清液中的磷,系统考察了预处理曝气量及曝气时间、Ca/P摩尔比、反应时间、曝气强度、晶种粒径和投加量对磷回收效率的影响.优化实验结果表明:当晶种粒径为100~150目、晶种投加量为30 g/L、n(Ca)/n(P)为2.5、反应时间为35 min时,系统磷回收率可达68.82%,微晶产率下降到21.32%.通过30 d连续动态进水对装置稳定性能的考察发现,磷的平均回收率维持在73.43%.运用扫描电子显微镜(SEM)、X 射线能谱仪(EDS)和 X 射线衍射仪(XRD)对结晶产物表征,表明磷主要以HAP及其前驱物形态回收.
Abstract:
With calcite as seed crystal, an induced hydroxyapatite(HAP)crystallization process was developed for phosphorus recovery from anaerobic supernatant of EBPR(enhanced biological phosphorus removal)in air-agitated crystallization columns. The influences of the pre-aeration rate and time, molar ratio of Ca/P, reaction time, aeration intensity, seed crystal size, and loads on the recovery rate were systematically investigated. The optimal test results show that when the seed diameter in mesh is 100 to 150, the seed dosage is 30 g/L, the n(Ca)/n(P)is 2.5 and the reaction time is 35 min, the phosphorus recovery rate of 68.82% is obtained, and the yield of microcrystalline drops to 21.32%. During the system stability by continuous water input for 30 d, the reaction system maintains an average recovery rate of 73.43%. Morphologies and structures of crystallized products characterized by SEM, EDS and XRD show that HAP and its intermediates are the main products.

参考文献/References:

[1] Conley D J, Paerl H W, Howarth R W, et al. Controlling eutrophication: Nitrogen and phosphorus [J]. Science, 2009, 323(5917): 1014-1015. DOI:10.1126/science.1167755.
[2] 郝晓地, 衣兰凯, 王崇臣,等. 磷回收技术的研发现状及发展趋势[J]. 环境科学学报, 2010, 30(5):897-907.
  Hao Xiaodi, Yi Lankai, Wang Chongchen, et al. Situation and prospects of phosphorus recovery techniques [J]. Acta Scientiae Circumstantiae, 2010, 30(5):897-907.(in Chinese)
[3] Withers P J A, Elser J J, Hilton J, et al. Greening the global phosphorus cycle: How green chemistry can help achieve planetary P sustainability [J]. Green Chemistry, 2015, 17(4): 2087-2099. DOI:10.1039/c4gc02445a.
[4] Moerman W, Carballa M, Vandekerckhove A, et al. Phosphate removal in agro-industry: Pilot-and full-scale operational considerations of struvite crystallization [J]. Water Research, 2009, 43(7): 1887-1892. DOI:10.1016/j.watres.2009.02.007.
[5] Suzuki K, Tanaka Y, Kuroda K, et al. Recovery of phosphorous from swine wastewater through crystallization [J]. Bioresource Technology, 2005, 96(14): 1544-1550. DOI:10.1016/j.biortech.2004.12.017.
[6] Kim E H, Yim S B, Jung H C, et al. Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material [J]. Journal of Hazardous Materials, 2006, 136(3): 690-697. DOI:10.1016/j.jhazmat.2005.12.051.
[7] Angela M, Beatrice B, Mathieu S. Biologically induced phosphorus precipitation in aerobic granular sludge process[J]. Water Research, 2011, 45(12): 3776-3786. DOI:10.1016/j.watres.2011.04.031.
[8] Yuan Z, Pratt S, Batstone D J. Phosphorus recovery from wastewater through microbial processes [J]. Current Opinion in Biotechnology, 2012, 23(6): 878-883. DOI:10.1016/j.copbio.2012.08.001.
[9] van Houwelingen G, Bond R, Seacord T, et al. Experiences with pellet reactor softening as pretreatment for inland desalination in the USA[J]. Desalination and Water Treatment, 2010, 13(1): 259-266. DOI:10.5004/dwt.2010.1097.
[10] Randall D G, Nathoo J, Lewis A E. A case study for treating a reverse osmosis brine using eutectic freeze crystallization: Approaching a zero waste process [J]. Desalination, 2011, 266(1): 256-262.DOI:10.1016/j.desal.2010.08.034.
[11] Moriyama K, Kojima T, Minawa Y, et al. Development of artificial seed crystal for crystallization of calcium phosphate [J]. Environmental Technology, 2001, 22(11):1245-1252.
[12] Suzuki K, Tanaka Y, Osada T, et al. Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration [J]. Water Research, 2002, 36(12): 2991-2998. DOI:10.1016/s0043-1354(01)00536-x.
[13] 邹海明, 吕锡武, 李婷. 诱导 HAP 结晶回收污水中磷主要影响因素分析[J]. 东南大学学报(自然科学版), 2013, 43(5): 1005-1010. DOI:10.3969/j.issn.1001-0505.2013.05.018.
  Zou Haiming, Lü Xiwu, Li Ting. Analysis of major influential factors on phosphorus recoveryfrom wastewater using induced HAP crystallization process [J]. Journal of Southeast University(Natural Science Edition),2013,43(5):1005-1010. DOI:10.3969/j.issn.1001-0505.2013.05.018.(in Chinese).
[14] 李国刚, 吕怡兵, 李娟. 水和废水污染物分析测试方法[M].北京: 化学工业出版社,2012: 219-221.
[15] Karapinar N, Hoffmann E, Hahn H H. P-recovery by secondary nucleation and growth of calcium phosphates on magnetite mineral [J]. Water Research, 2006, 40(6): 1210-1216. DOI:10.1016/j.watres.2005.12.041.
[16] 史静, 吕锡武, 许正文, 等. A2N-IC工艺诱导结晶柱位置选择及投药量优化[J]. 东南大学学报(自然科学版), 2015, 45(1): 103-108. DOI:10.3969/j.issn.1001-0505.2015.01.019.
  Shi Jing, Lü Xiwu, Xu Zhengwen, et al. Optimizations of induced crystallization reactor position and calcium dosage in A2N-IC process [J]. Journal of Southeast University(Natural Science Edition),2015, 45(1):103-108. DOI:10.3969/j.issn.1001-0505.2015.01.019.(in Chinese)
[17] Song Y, Weidler P G, Berg U, et al. Calcite-seeded crystallization of calcium phosphate for phosphorus recovery [J]. Chemosphere, 2006, 63(2): 236-243. DOI:10.1016/j.chemosphere.2005.08.021.
[18] Hosni K, Moussa S B, Chachi A, et al. The removal of PO3-4 by calcium hydroxide from synthetic wastewater: optimization of the operating conditions [J]. Desalination, 2008, 223(1): 337-343. DOI:10.1016/j.desal.2007.01.213.
[19] 葛杰, 钱锋, 宋永会, 等. 白云石石灰流化结晶污水除磷工艺[J]. 环境科学学报,2014, 34(6): 1480-1488. DOI:10.13671/j.hjkxxb.2014.0539.
  Ge Jie, Qian Feng, Song Yonghui, et al. Process of phosphorus removal from wastewater by dolomite fluidized crystallization [J]. Acta Scientiae Circumstantiae, 2014, 34(06):1480-1488. DOI:10.13671/j.hjkxxb.2014.0539.(in Chinese)
[20] 李佳凤, 吕锡武, 徐微, 等. 诱导结晶反应器回收富磷上清液中磷的研究[J]. 中国给水排水, 2010, 26(1):13-15.
  Li Jiafeng, Lü Xiwu, Xu Wei, et al. Study on operation parameters of fluidized induced crystallizer for phosphorus recovery [J]. China Water & Wastewater, 2010, 26(1):13-15.(in Chinese)
[21] 陈坚, 袁鹏, 蔡思鑫, 等. 碳酸盐体系中pH对Cu2+诱导结晶过程的影响[J]. 环境科学研究, 2015, 28(1):96-102.
  Chen Jian, Yuan Peng, Cai Sixin, et al. Impacts of pH on the process of crystallization induced by copper in carbonate system [J]. Research of Environmental Sciences, 2015, 28(1):96-102.(in Chinese)
[22] Aldaco R, Garea A, Irabien A. Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor [J]. Water Research, 2007, 41(4): 810-818. DOI:10.1016/j.watres.2006.11.040.
[23] Kim E H, Lee D W, Hwang H K, et al. Recovery of phosphates from wastewater using converter slag: Kinetics analysis of a completely mixed phosphorus crystallization process [J]. Chemosphere, 2006, 63(2): 192-201. DOI:10.1016/j.chemosphere.2005.08.029.
[24] Tervahauta T, van der Weijden R D, Flemming R L, et al. Calcium phosphate granulation in anaerobic treatment of black water: A new approach to phosphorus recovery [J]. Water Research, 2014, 48(1): 632-642. DOI:10.1016/j.watres.2013.10.012.
[25] Combes C, Rey C. Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials [J]. Acta Biomaterialia, 2010, 6(9): 3362-3378. DOI:10.1016/j.actbio.2010.02.017.
[26] Qiu G, Law Y M, Das S, et al. Direct and complete phosphorus recovery from municipal wastewater using a hybrid microfiltration-forward osmosis membrane bioreactor process with seawater brine as draw solution [J]. Environmental Science & Technology, 2015, 49(10): 6156-6163. DOI:10.1021/es504554f.
[27] Shi J, Lu X, Yu R, et al. Nutrient removal and phosphorus recovery performances of a novel anaerobic-anoxic/nitrifying/induced crystallization process [J]. Bioresource Technology, 2012, 121(2): 183-189. DOI:10.1016/j.biortech.2012.06.064.
[28] Harris W G, Wilkie A C, Cao X, et al. Bench-scale recovery of phosphorus from flushed dairy manure wastewater [J]. Bioresource Technology, 2008, 99(8): 3036-3043. DOI:10.1016/j.biortech.2007.06.065.
[29] Song Y, Hahn H H, Hoffmann E. Effects of solution conditions on the precipitation of phosphate for recovery: A thermodynamic evaluation [J]. Chemosphere, 2002, 48(10): 1029-1034. DOI:10.1016/s0045-6535(02)00183-2.

相似文献/References:

[1]邹海明,吕锡武,李婷.诱导HAP结晶回收污水中磷主要影响因素分析[J].东南大学学报(自然科学版),2013,43(5):1005.[doi:10.3969/j.issn.1001-0505.2013.05.018]
 Zou Haiming,Lu Xiwu,Li Ting.Analysis of major influential factors on phosphorus recovery from wastewater using induced HAP crystallization process[J].Journal of Southeast University (Natural Science Edition),2013,43(5):1005.[doi:10.3969/j.issn.1001-0505.2013.05.018]

备注/Memo

备注/Memo:
收稿日期: 2016-03-04.
作者简介: 代洪亮(1987—),男,博士生;吕锡武(联系人),男,博士,教授,博士生导师,xiwulu@seu.edu.cn.
基金项目: “十二五”国家水体污染控制与治理科技重大专项资助项目(2012ZX07101-005)、国家自然科学基金资助项目(51078074)、中央高校基本科研业务费专项资金资助项目:江苏省普通高校研究生科研创新计划(KYLX15-0073).
引用本文: 代洪亮,吕锡武,高琪娜.基于诱导HAP结晶的强化生物除磷工艺厌氧上清液中的磷回收[J].东南大学学报(自然科学版),2016,46(5):1020-1026. DOI:10.3969/j.issn.1001-0505.2016.05.021.
更新日期/Last Update: 2016-09-20