[1]窦雪萍,过秀成,龚小林.面向协同调度的公交时刻表鲁棒优化模型[J].东南大学学报(自然科学版),2016,46(5):1110-1114.[doi:10.3969/j.issn.1001-0505.2016.05.036]
 Dou Xueping,Guo Xiucheng,Gong Xiaolin.Robust timetable optimization model for coordinated scheduling in a bus network[J].Journal of Southeast University (Natural Science Edition),2016,46(5):1110-1114.[doi:10.3969/j.issn.1001-0505.2016.05.036]
点击复制

面向协同调度的公交时刻表鲁棒优化模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第5期
页码:
1110-1114
栏目:
交通运输工程
出版日期:
2016-09-20

文章信息/Info

Title:
Robust timetable optimization model for coordinated scheduling in a bus network
作者:
窦雪萍过秀成龚小林
东南大学交通学院, 南京 210096
Author(s):
Dou Xueping Guo Xiucheng Gong Xiaolin
School of Transportation, Southeast University, Nanjing 210096, China
关键词:
协同调度 公交时刻表 鲁棒优化模型 换乘负效用 遗传算法
Keywords:
coordinated scheduling bus timetable robust optimization model transfer disutility genetic algorithm
分类号:
U121
DOI:
10.3969/j.issn.1001-0505.2016.05.036
摘要:
为实现公共交通网络协同调度,以网络内总换乘负效用最小为目标,构建了考虑公交车辆运行随机性的时刻表鲁棒优化模型.线路间换乘衔接关系、公交车辆首站计划发车时刻、站点间运行时间和站点处停靠时间为模型主要输入参数,用于求解各线路首站计划发车时刻最优偏移量.由于所建优化模型为非凸规划模型,设计了包含蒙特卡洛仿真方法的遗传算法以获取模型近似最优解.最后,基于算例验证了公交时刻表鲁棒优化模型与遗传算法的可行性.结果表明,与现有时刻表相比,优化后时刻表可减少约22%的总换乘负效用,能有效改善公交网络内换乘服务.此外,与枚举算法求解结果的对比分析验证了遗传算法可行且高效.
Abstract:
To achieve coordinated scheduling in a bus network, a robust timetable optimization model considering the randomness of bus operation is formulated with the objective of minimizing total transfer disutility. Transfer relations, scheduled terminal departure times, practical bus travel times between any two successive stops, and dwell times at stops are used as the main input parameters of the model to seek the optimal offset times of scheduled terminal departure times. Due to the non-convex characteristic of the developed optimization model, a genetic algorithm coupled with a Monte Carlo simulation method is proposed to obtain the near optimal solution to the robust model. Finally, a numerical experiment is carried out to evaluate the applicability of the robust timetable optimization model and the genetic algorithm. The results indicate that the timetables optimized by the proposed model can effectively reduce transfer disutility by about 22% and thus improve interline transfer service. Moreover, compared with the enumeration algorithm, the genetic algorithm is effective and efficient.

参考文献/References:

[1] Lee K K T, Schonfeld P. Optimal slack time for timed transfers at a transit terminal [J]. Journal of Advanced Transportation, 1991, 25(3): 281-308. DOI:10.1002/atr.5670250304.
[2] Ceder A, Golany B, Tal O. Creating bus timetables with maximal synchronization [J]. Transportation Research Part A: Policy and Practice, 2001, 35(10): 913-928. DOI:10.1016/s0965-8564(00)00032-x.
[3] Ibarra-Rojas O J, Rios-Solis Y A. Synchronization of bus timetabling [J]. Transportation Research Part B: Methodological, 2012, 46(5): 599-614. DOI:10.1016/j.trb.2012.01.006.
[4] Cevallos F, Zhao F. Minimizing transfer times in public transit network with genetic algorithm [J]. Transportation Research Record: Journal of the Transportation Research Board, 2006, 1971: 74-79. DOI:10.3141/1971-11.
[5] 刘志刚, 申金升, 王海星, 等. 基于协同发车的区域公交时刻表生成模型研究[J]. 交通运输系统工程与信息, 2007, 7(2): 109-113. DOI:10.3969/j.issn.1009-6744.2007.02.019.
  Liu Zhigang, Shen Jinsheng, Wang Haixing, et al. Regional public transportation timetabling model with synchronization [J]. Journal of Transportation System Engineering and Information Technology, 2007, 7(2): 109-113. DOI:10.3969/j.issn.1009-6744.2007.02.019.(in Chinese)
[6] Shafahi Y, Khani A. A practical model for transfer optimization in a transit network: Model formulations and solutions [J]. Transportation Research Part A: Policy and Practice, 2010, 44(6): 377-389. DOI:10.1016/j.tra.2010.03.007.
[7] Tuzun Aksu D, Yilmaz S. Transit coordination with heterogeneous headways [J]. Transportation Planning and Technology, 2014, 37(5): 450-465. DOI:10.1080/03081060.2014.912419.
[8] Parbo J, Nielsen O A, Prato C G. User perspectives in public transport timetable optimisation [J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 269-284. DOI:10.1016/j.trc.2014.09.005.
[9] 曹志超, 袁振洲, 李得伟. 城市轨道交通同步协调的优化模型[J]. 东南大学学报(自然科学版), 2016, 46(1): 221-225.
  Cao Zhichao, Yuan Zhenzhou, Li Dewei. Synchronization and coordination optimization model of urban rail transit[J]. Journal of Southeast University(Natural Science Edition), 2015, 46(1): 221-225.(in Chinese)
[10] 王殿海, 汤月华, 陈茜, 等. 基于GPS数据的公交站点区间行程时间可靠性影响因素[J]. 东南大学学报(自然科学版), 2015, 45(2): 404-412. DOI:10.3969/j.issn.1001-0505.2015.02.036.
  Wang Dianhai, Tang Yuehua, Chen Qian, et al. Influence factors of GPS-based bus travel time reliability between adjacent bus stations [J]. Journal of Southeast University(Natural Science Edition), 2015, 45(2): 404-412. DOI:10.3969/j.issn.1001-0505.2015.02.036.(in Chinese)
[11] Ma Z, Ferreira L, Mesbah M, et al. Modeling distributions of travel time variability for bus operations [J]. Journal of Advanced Transportation, 2015, 50(1): 6-24. DOI:10.1002/atr.1314.

备注/Memo

备注/Memo:
收稿日期: 2016-01-14.
作者简介: 窦雪萍(1988—),女,博士生;过秀成(联系人),男,博士,教授,博士生导师,seuguo@163.com.
基金项目: 江苏省交通科学研究计划资助项目(09R04).
引用本文: 窦雪萍,过秀成,龚小林.面向协同调度的公交时刻表鲁棒优化模型[J].东南大学学报(自然科学版),2016,46(5):1110-1114. DOI:10.3969/j.issn.1001-0505.2016.05.036
更新日期/Last Update: 2016-09-20