[1]陈伟宇,刘晨晗,陶毅,等.声子聚焦效应对薄膜间接触热阻尺寸效应的影响[J].东南大学学报(自然科学版),2016,46(6):1155-1160.[doi:10.3969/j.issn.1001-0505.2016.06.008]
 Chen Weiyu,Liu Chenhan,Tao Yi,et al.Effect of phonon focusing on thickness-dependent contact thermal conductance between thin films[J].Journal of Southeast University (Natural Science Edition),2016,46(6):1155-1160.[doi:10.3969/j.issn.1001-0505.2016.06.008]
点击复制

声子聚焦效应对薄膜间接触热阻尺寸效应的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第6期
页码:
1155-1160
栏目:
数学、物理学、力学
出版日期:
2016-11-20

文章信息/Info

Title:
Effect of phonon focusing on thickness-dependent contact thermal conductance between thin films
作者:
陈伟宇刘晨晗陶毅蔡爽魏志勇毕可东杨决宽陈云飞
东南大学机械工程学院, 南京211189
Author(s):
Chen Weiyu Liu Chenhan Tao Yi Cai Shuang Wei ZhiyongBi Kedong Yang Juekuan Chen Yunfei
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
关键词:
分子动力学 声子聚焦 声子辐射 接触热导 尺寸效应
Keywords:
molecular dynamics phonon focusing phonon irradiation contact thermal conductance size effect
分类号:
O469
DOI:
10.3969/j.issn.1001-0505.2016.06.008
摘要:
采用非平衡态分子动力学方法,模拟计算了多层石墨烯之间和硅薄膜之间的接触热导随薄膜厚度增长的变化趋势.模拟结果显示,多层石墨烯之间的接触热导在厚度方向有显著的尺寸效应,随着厚度的增大,接触热导显著增大,而硅薄膜之间的接触热导随着厚度的增大没有明显变化.另外,根据声子辐射理论,采用各向异性的Debye模型,定义了接触热导尺寸效应强度α,并计算了尺寸效应强度随薄膜厚度增长的变化趋势.结果显示,声子聚焦效应对薄膜间接触热导的尺寸效应有很大影响.该结论有助于建立薄膜之间的接触热导模型和调控纳米复合材料的传热学性质.
Abstract:
Thickness-dependent contact thermal conductance(CTC)between multilayer graphene as well as silicon thin films was investigated using the nonequilibrium molecular dynamics simulation method. The simulation results show that the CTC between multilayer graphenes is thickness dependent, and increases as the thickness gets larger. However, the CTC between silicon thin films is almost thickness independent. In addition, according to the phonon irradiation theory and the anisotropic Debye model, size effect strength α was defined and was calculated to show its variation trend as the film thickness increases. The results show that the phonon focusing dose plays an important role in the thickness dependence of CTC. This conclusion is helpful in establishing the model of CTC between thin films and in controlling the engineering thermal transport properties of nanocomposites.

参考文献/References:

[1] Li D Y, Wu Y Y, Kim P, et al.Thermal conductivity of individual silicon nanowires[J]. Applied Physics Letters, 2003, 83(14): 2934-2936. DOI:10.1063/1.1616981.
[2] Chen R, Hochbaum A I, Murphy P, et al.Thermal conductance of thin silicon nanowires[J]. Physical Review Letters, 2008, 101(10): 105501. DOI:10.1103/PhysRevLett.101.105501.
[3] Marconnet A M, Asheghi M,Goodson K E. From the Casimir limit to phononic crystals: 20 years of phonon transport studies using silicon-on-insulator technology[J]. Journal of Heat Transfer, 2013, 135(6): 061601. DOI:10.1115/1.4023577.
[4] Xie G, Guo Y, Li B, et al.Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires[J]. Physical Chemistry Chemical Physics, 2013, 15(35): 14647-14652. DOI:10.1039/c3cp50969a.
[5] Prasher R. Acoustic mismatch model for thermal contact resistance of Van Der Waals contacts[J].Applied Physics Letters, 2009, 94(4): 041905. DOI:10.1063/1.3075065.
[6] Li D, McGaughey A J H. Phonon dynamics at surfaces and interfaces and its implications in energy transport in nanostructured materials-An opinion paper[J]. Nanoscale and Microscale Thermophysical Engineering, 2015, 19(2): 166-182. DOI:10.1080/15567265.2015.1035199.
[7] Liang Z, Sasikumar K,Keblinski P. Thermal transport across a substrate-thin-film interface: Effects of film thickness and surface roughness[J]. Physical Review Letters, 2014, 113(6): 065901. DOI:10.1103/PhysRevLett.113.065901.
[8] Krenzer B, Hanisch-Blicharski A, Schneider P, et al.Phonon confinement effects in ultrathin epitaxial bismuth films on silicon studied by time-resolved electron diffraction[J]. Physical Review B, 2009, 80(2):024307. DOI:10.1103/physrevb.80.024307.
[9] Liang Z, Keblinski P. Finite-size effects on molecular dynamics interfacial thermal-resistance predictions[J]. Physical Review B, 2014, 90(7): 075411. DOI:10.1103/physrevb.90.075411.
[10] Swartz E T, Pohl R O. Thermal boundary resistance[J]. Reviews of Modern Physics, 1989, 61(3): 605-668. DOI:10.1103/revmodphys.61.605.
[11] Yang J K, Shen M, Yang Y, et al.Phonon transport through point contacts between graphitic nanomaterials[J]. Physical Review Letters, 2014, 112(20): 205901. DOI:10.1103/physrevlett.112.205901.
[12] Tersoff J. Empirical interatomic potential for carbon, with applications to amorphous-carbon[J]. Physical Review Letters, 1988, 61(25): 2879-2882. DOI:10.1103/PhysRevLett.61.2879.
[13] Stillinger F H, Weber T A. Computer simulation of local order in condensed phases of silicon[J]. Physical Review B, 1985, 31(8): 5262-5271. DOI:10.1103/physrevb.31.5262.
[14] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. DOI:10.1006/jcph.1995.1039.
[15] Mayo S L, Olafson B D,Goddard W A. Dreiding: A generic force field for molecular simulations[J]. The Journal of Physical Chemistry, 1990, 94(26): 8897-8909. DOI:10.1021/j100389a010.
[16] Maiti A, Mahan G D,Pantelides S T. Dynamical simulations of nonequilibrium processes—heat flow and the kapitza resistance across grain boundaries[J]. Solid State Communications, 1997, 102(7): 517-521. DOI:10.1016/s0038-1098(97)00049-5.
[17] Jund P, Jullien R. Molecular-dynamics calculation of the thermal conductivity of vitreous silica[J]. Physical Review B, 1999, 59(21): 13707-13711. DOI:10.1103/physrevb.59.13707.
[18] Huxtable S T, Cahill D G, Shenogin S, et al.Relaxation of vibrational energy in fullerene suspensions[J]. Chemical Physics Letters, 2005, 407(1/2/3): 129-134. DOI:10.1016/j.cplett.2005.03.052.
[19] Chen Z, Wei Z, Chen Y, et al.Anisotropic Debye model for the thermal boundary conductance[J]. Physical Review B, 2013, 87(12): 125426. DOI:10.1103/physrevb.87.125426.
[20] Dames C, Chen G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires[J]. Journal of Applied Physics, 2004, 95(2): 682-693.
[21] Wei Z, Chen Y,Dames C. Negative correlation between in-plane bonding strength and cross-plane thermal conductivity in a model layered material[J]. Applied Physics Letters, 2013, 102(1): 011901. DOI:10.1063/1.4773372.
[22] Blakslee O L, Proctor D G, Seldin E J, et al.Elastic constants of compression-annealed pyrolytic graphite[J]. Journal of Applied Physics, 1970, 41(8): 3373-3382. DOI:10.1063/1.1659428.
[23] Kelly B T, Walker P L Jr. Theory of thermal expansion of a graphite crystal in the semi-continuum model[J]. Carbon, 1970, 8(2): 211-226. DOI:10.1016/0008-6223(70)90116-8.
[24] Chen W, Yang J, Wei Z, et al.Effects of interfacial roughness on phonon transport in bilayer silicon thin films[J]. Physical Review B, 2015, 92(13): 134113. DOI:10.1103/physrevb.92.134113.
[25] Wei Z, Yang J, Chen W, et al.Phonon mean free path of graphite along the c-axis[J]. Applied Physics Letters, 2014, 104(8): 081903. DOI:10.1063/1.4866416.

相似文献/References:

[1]吴勇华,杨决宽,陈云飞,等.超晶格薄膜热传导的分子动力学模拟[J].东南大学学报(自然科学版),2003,33(4):468.[doi:10.3969/j.issn.1001-0505.2003.04.021]
 Wu Yonghua,Yang Juekuan,Chen Yunfei,et al.Molecular dynamics simulation of superlattice thermal conductivities[J].Journal of Southeast University (Natural Science Edition),2003,33(6):468.[doi:10.3969/j.issn.1001-0505.2003.04.021]
[2]杨立波,陈永平,张程宾,等.受限Lennard-Jones流体自扩散系数的分子动力学模拟[J].东南大学学报(自然科学版),2011,41(2):317.[doi:10.3969/j.issn.1001-0505.2011.02.020]
 Yang Libo,Chen Yongping,Zhang Chengbin,et al.Molecular dynamics simulation of self-diffusion coefficient of confined Lennard-Jones fluid[J].Journal of Southeast University (Natural Science Edition),2011,41(6):317.[doi:10.3969/j.issn.1001-0505.2011.02.020]
[3]王玉娟,郭亚杰,裘英华,等.硅表面微结构对表面润湿方向性影响的分子动力学研究[J].东南大学学报(自然科学版),2014,44(6):1161.[doi:10.3969/j.issn.1001-0505.2014.06.012]
 Wang Yujuan,Guo Yajie,Qiu Yinghua,et al.Effects of surface microstructure on wetting direction of silicon substrates by molecular dynamics study[J].Journal of Southeast University (Natural Science Edition),2014,44(6):1161.[doi:10.3969/j.issn.1001-0505.2014.06.012]

备注/Memo

备注/Memo:
收稿日期: 2016-02-29.
作者简介: 陈伟宇(1987—),男,博士生;陈云飞(联系人),男,博士,教授,博士生导师,yunfeichen@seu.edu.cn.
基金项目: 国家自然科学基金重点资助项目(51435003)、江苏省普通高校学术学位研究生创新计划资助项目(KYLX15_0058)、东南大学优秀博士学位论文培育基金资助项目(YBJJ1541).
引用本文: 陈伟宇,刘晨晗,陶毅,等.声子聚焦效应对薄膜间接触热阻尺寸效应的影响[J].东南大学学报(自然科学版),2016,46(6):1155-1160. DOI:10.3969/j.issn.1001-0505.2016.06.008.
更新日期/Last Update: 2016-11-20