[1]张国军,幸研.一种基于端点非插值性的NURBS曲面重构方法[J].东南大学学报(自然科学版),2016,46(6):1161-1164.[doi:10.3969/j.issn.1001-0505.2016.06.009]
 Zhang Guojun,Xing Yan.A reconstruction method for NURBS surface by curve unclamping[J].Journal of Southeast University (Natural Science Edition),2016,46(6):1161-1164.[doi:10.3969/j.issn.1001-0505.2016.06.009]
点击复制

一种基于端点非插值性的NURBS曲面重构方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第6期
页码:
1161-1164
栏目:
计算机科学与工程
出版日期:
2016-11-20

文章信息/Info

Title:
A reconstruction method for NURBS surface by curve unclamping
作者:
张国军幸研
东南大学机械工程学院, 南京 211189
Author(s):
Zhang Guojun Xing Yan
School of Mechanical Engineering, Southeast University, Nanjing 21189, China
关键词:
非均匀有理B样条 曲面离散 曲面重构 端点非插值性
Keywords:
non-uniform rational B-spline surface discretization surface reconstruction curve unclamping
分类号:
TP39
DOI:
10.3969/j.issn.1001-0505.2016.06.009
摘要:
为了解决多面片拼接曲面、多修饰特征曲面连续性差且难以延展的问题,提出了基于端点非插值性的NURBS曲面重构方法.首先根据位置和曲率的不同,将原始曲面离散为点云数据,根据离散点计算各个采样路径上的节点矢量;然后计算出曲面重构所需的端点非插值性的共同节点矢量及相应的控制点,并将共同节点矢量转化成标准的端点插值节点矢量,根据最新的端点插值节点矢量在无数据点区间插入新的型值点;最后将所有数据点重新拟合成单一曲面.重构结果表明,通过使用该方法重构所需的计算量降低,重构出的曲面精度较高.在曲率变化剧烈处,既保证了与原始曲面的贴合率,又保证了截面线的曲率连续性.该方法将原始曲面重构为单一曲面,提高了曲面重构精度,有效地解决了造型中易出现的曲面退化、曲面畸变等问题.
Abstract:
To solve the poor continuity and extension of surface with multipatch splicing and dress up features, a non-uniform rational B-spline(NURBS)surface reconstruction method based on the unclamping was proposed. First, the original surface was discretized into point-cloud according to the different locations and curvatures, the knot vectors of each sampling path were calculated based on discreted points. Then, the unclamping common knot vector and the control net required for surface-reconstruction were calculated, and the unclamping common vector needed to be changed into the clamping common vector. Based on the latest clamping vector, new data points were inserted into the rectangle without data. Finally, all data points were fitted to a single surface. The reconstruction results show that the amount of calculation is reduced and the reconstructed surface has high accuracy. It can guarantee the fitting ratio and the continuity of curvature where the curvature has sharp change. During modeling, the proposed method reconstructs the original surface to a single surface, improves the precision of the surface reconstruction and solves problems, such as surface degradation and surface distortion.

参考文献/References:

[1] Piegl Les, Tiller Wayne. The NURBS book [M]. New York, USA:Springer,1995:60-200.
[2] Boehm W. Inserting new knots into B-spline curves [J].Computer-Aided Design, 1980, 12(4): 199-201.
[3] Hu S M, Tai C L, Zhang S H. An extension algorithm for B-splines by curve unclamping [J]. Computer-Aided Design, 2002, 34(5):415-419.
[4] Chen X D, Ma W Y, Paul J C. Cubic B-spline curve approximation by curve unclamping [J]. Computer-Aided Design, 2010, 42(6):523-534.
[5] Zhiming X, Jincheng C, Zhengjin F. Performance evaluation of a realtime interpolation algorithm for NURBS curves [J]. Int J Adv Manufact Technol, 2002, 20:270-276.
[6] Cheng F B, Liu Z Y, Duan G F,et al. NURBS surface deformation design for complex products by transplanting the surface feature[J]. Engineering with Computers, 2014, 30(4):599-608.
[7] Tsai Mengshiun, Nien Haowei, Yau Hongtzong. Development of an integrated look-ahead dynamics-based NURBS interpolator for high precision machinery [J]. Computer-Aided Design, 2008, 40(5): 554-566.
[8] Shi Xiquan, Wang Tianjun,Wu Peiru, et al. Reconstruction of convergent G1 smooth B-spline surfaces [J].Computer Aided Geometric Design, 2004, 21(9): 893-913.
[9] Jiang Q Q, Wu Z K, Zhang T, et al. G(2)-continuity extension algorithm of ball B-spline curves [J]. Ieice Transactions on Information and Systems, 2014, 97(8):2030-2037.
[10] Chen H, Bishop J. Delaunay triangulation for curved surface [C]//Proceedings of the 6th International Meshing Roundtable. Park City, USA, 1997:115-127.
[11] Shetty S, White P R. Curvature-continuous extensions for rational B-spline curves and surfaces [J].Computer-Aided Design, 1991, 23(7):484-491.

备注/Memo

备注/Memo:
收稿日期: 2016-02-16.
作者简介: 张国军(1989—),男,博士生;幸研(联系人),男,博士,教授,博士生导师,xingyan@seu.edu.cn.
基金项目: “十二五”某部先进制造技术预先研究资助项目(51318010102)、江苏省前瞻性联合研究资助项目(BY2015070-06).
引用本文: 张国军,幸研.一种基于端点非插值性的NURBS曲面重构方法[J].东南大学学报(自然科学版),2016,46(6):1161-1164. DOI:10.3969/j.issn.1001-0505.2016.06.009.
更新日期/Last Update: 2016-11-20