[1]陈虹,邹阳,梁文清,等.液氮管道排空过程CFD模拟及分析[J].东南大学学报(自然科学版),2016,46(6):1246-1250.[doi:10.3969/j.issn.1001-0505.2016.06.023]
 Chen Hong,Zou Yang,Liang Wenqing,et al.CFD simulations and analyses on emptying process of nitrogen pipeline[J].Journal of Southeast University (Natural Science Edition),2016,46(6):1246-1250.[doi:10.3969/j.issn.1001-0505.2016.06.023]
点击复制

液氮管道排空过程CFD模拟及分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第6期
页码:
1246-1250
栏目:
能源与动力工程
出版日期:
2016-11-20

文章信息/Info

Title:
CFD simulations and analyses on emptying process of nitrogen pipeline
作者:
陈虹1邹阳2梁文清2钱华2高旭1
1总装备部工程设计研究总院航天低温推进剂技术国家重点实验室, 北京 100028; 2东南大学能源与环境学院, 南京 210096
Author(s):
Chen Hong1 Zou Yang2 Liang Wenqing2 Qian Hua2 Gao Xu1
1State Key Laboratory of Technologies in Space Cryogenic Propellants, Center for Engineering Design and Research Under the Headquarters of General Equipment, Beijing 100028, China
2School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
管路排空 低温液体 数值模拟 流体体积
Keywords:
pipeline releases cryogenic liquid numerical simulation volume of fluid(VOF)
分类号:
TB611
DOI:
10.3969/j.issn.1001-0505.2016.06.023
摘要:
为研究低温管路中低温液体的排空过程,采用计算流体力学(CFD)方法中非稳态流动以及流体体积(VOF)模型对管路中液氮向外排空过程进行模拟计算,并将模拟结果与实验结果进行对比验证.模拟结果显示,当氮气质量流量较小时,氮气虽然会在一定时间内到达出口,但管道底部仍存有液氮,出现分层现象.这就需要通过氮气带进的热量使液氮受热蒸发排空,致使完全排空时间变长.随着氮气质量流量的增大,排空时间变短.当氮气流量增加到一定数值时,管道底部无液氮残留,可以直接完全排空.该研究结果可以同时为排空低温液氢等危险流体提供理论指导.
Abstract:
To investigate the emptying process of pipeline of cryogenic liquid, unsteady flow and volume of fluid(VOF)models in computational fluid dynamics(CFD)method were used to simulate of release process of the liquid nitrogen. Simulation results were validated by experimental results. The simulation results show that when nitrogen flow rate is lower, it can throughout the pipe for some time but some liquids remain in the pipe bottom. And the stratified phenomenon can be obtained. By using nitrogen injection to heat liquid nitrogen and make it evaporated, it can be empty totally at the end. Also the totally emptying time of liquid is longer. With the nitrogen flow rate increasing, the empty time is shorter. When nitrogen flow rate is beyond a certain level, the nitrogen can push and empty the nitrogen directly and no liquid remains. The results also provide a theoretical guidance for emptying liquid hydrogen and other dangerous cryogenic liquids.

参考文献/References:

[1] Ichard M, Hansen O R, Middha P, et al. CFD computations of liquid hydrogen releases [J]. International Journal of Hydrogen Energy, 2012, 37(22): 17380-17389. DOI:10.1016/j.ijhydene.2012.05.145.
[2] van Dresar N T, Siegwarth J D, Hasan M M. Convective heat transfer coefficients for near-horizontal two-phase flow of nitrogen and hydrogen at low mass and heat flux [J]. Cryogenics, 2001, 41(11/12): 805-811. DOI:10.1016/s0011-2275(01)00173-4.[3] 李祥东,汪荣顺,黄荣国,等.垂直圆管内液氮流动沸腾的理论模型及数值模拟[J].化工学报,2006,57(3):491-497.DOI:10.3321/j.issn:0438-1157.2006.03.004.
  Li Xiangdong, Wang Rongshun, Huang Rongguo, et al. Modelling and numerical simulation of boiling flow of liquid nitrogen in vertical tube [J]. Journal of Chemical Industry and Engineering, 2006, 57(3): 491-497. DOI:10.3321/j.issn:0438-1157.2006.03.004.(in Chinese)
[4] 熊炜,汤轲,陈建业,等.液氮核态池沸腾CFD模拟和可视化实验[J].低温工程,2014(5):6-9,33.
  Xiong Wei, Tang Ke, Chen Jianye, et al. CFD simulations and experimental verification on nucleate pool boiling of liquid nitrogen [J]. Cryogenics, 2014(5): 6-9,33.(in Chinese)
[5] 陈亮,梁国柱,邓新宇,等.贮箱内低温推进剂汽化过程的CFD数值仿真[J].北京航空航天大学学报,2013,39(2):264-268.
  Chen Liang, Liang Guozhu, Deng Xinyu, et al. CFD numerical simulation of cryogenic propellant vaporization in tank [J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(2): 264-268.(in Chinese)
[6] ANSYS. ANSYS fluent theory guide [M]. Canonsburg, PA, USA: ANSYS Inc, 2013: 468-475.
[7] Lee W H. A pressure iteration scheme for two-phase flow modeling [M]. Washington,USA:Hemisphere Publish, 1980: 407-427.
[8] de Schepper S C K, Heynderickx G J, Marin G B. Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker [J]. Computers and Chemical Engineering, 2009, 33(1): 122-132. DOI:10.1016/j.compchemeng.2008.07.013.
[9] Alizadehdakhel A, Rahimi M, Alsairfi A A. CFD modeling of flow and heat transfer in a thermosyphon [J]. International Communications in Heat and Mass Transfer, 2010, 37(3): 312-318. DOI:10.1016/j.icheatmasstransfer.2009.09.002.
[10] Yang Z, Peng X F, Ye P. Numerical and experimental investigation of two phase flow during boiling in a coiled tube [J]. International Journal of Heat and Mass Transfer, 2008, 51(5): 1003-1016. DOI:10.1016/j.ijheatmasstransfer.2007.05.025.

备注/Memo

备注/Memo:
收稿日期: 2015-12-26.
作者简介: 陈虹(1966—),女,研究员;梁文清(联系人),男,博士,副研究员,hemelrijken@126.com.
基金项目: 航天低温推进剂技术国家重点实验室开放课题资助项目(SKLTSCP1512).
引用本文: 陈虹,邹阳,梁文清,等.液氮管道排空过程CFD模拟及分析[J].东南大学学报(自然科学版),2016,46(6):1246-1250. DOI:10.3969/j.issn.1001-0505.2016.06.023.
更新日期/Last Update: 2016-11-20