[1]徐善华,王皓,苏磊,等.考虑点蚀损伤的锈蚀钢板延性退化[J].东南大学学报(自然科学版),2016,46(6):1257-1263.[doi:10.3969/j.issn.1001-0505.2016.06.025]
 Xu Shanhua,Wang Hao,Su Lei,et al.Ductility degradation of corroded steel plates with pitting damage[J].Journal of Southeast University (Natural Science Edition),2016,46(6):1257-1263.[doi:10.3969/j.issn.1001-0505.2016.06.025]
点击复制

考虑点蚀损伤的锈蚀钢板延性退化()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第6期
页码:
1257-1263
栏目:
土木工程
出版日期:
2016-11-20

文章信息/Info

Title:
Ductility degradation of corroded steel plates with pitting damage
作者:
徐善华王皓苏磊薛奇峰
西安建筑科技大学土木工程学院, 西安 710055
Author(s):
Xu Shanhua Wang Hao Su Lei Xue Qifeng
School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
关键词:
点蚀损伤钢板 延性退化 点蚀坑几何参数 应力三轴度 等效延性断裂准则
Keywords:
steel plates with pitting damage ductility degradation pitting geometric parameters stress triaxiality equivalent ductile fracture criterion
分类号:
TU391
DOI:
10.3969/j.issn.1001-0505.2016.06.025
摘要:
为研究点蚀损伤钢板延性退化机理,采用三维形貌测量技术测得不同锈蚀程度钢板表面点蚀坑几何参数,并通过单调拉伸试验和有限元数值分析研究了点蚀损伤对钢板延性的影响.此外,根据应力三轴度与点蚀坑深度、间距及深径比间的关系,提出了与点蚀坑几何尺寸相关的点蚀损伤钢板等效延性断裂准则.结果表明:表面点蚀坑深度及深径比均随钢板锈蚀程度的增加而线性增长;点蚀坑几何尺寸的增长显著改变了钢板内部应力三轴度的大小和分布,降低了等效塑性断裂应变,加快了颈缩阶段钢板内部裂纹的萌生和扩展,从而导致锈蚀钢板极限伸长率逐渐退化;采用等效延性断裂准则能准确地模拟点蚀损伤导致的钢板延性退化现象.
Abstract:
To investigate the mechanism of ductility degradation of the steel plates with pitting damage, the pitting geometric parameters on the surface of the steel plates with different corrosion degrees were tested by three-dimensional(3D)profile measurement technology, and the effects of pitting damage on the ductility of steel plates were studied by the monotonic tensile tests and finite element numerical analysis. In addition, the equivalent ductile fracture criterion of the steel plates with pitting damage related to the pitting geometric parameters was proposed based on the relationships between the stress triaxiality and the pitting depth, the pitting distance, and the depth-radius ratio. The results show that both the pitting depth and the pitting depth-radius ratio increase linearly with the increase of the corrosion degree. The increase of the geometric dimension of the pits changes the magnitude and the distribution of the triaxial stress of the steel plates significantly, reduces the critical equivalent plastic strain, and accelerates the initiation and propagation of the cracks at the necking stage, inducing the gradual degradation of the ultimate elongation of the corroded steel plates. The ductility degradation of steel plates caused by pitting damage can be accurately simulated by the equivalent ductile fracture criterion.

参考文献/References:

[1] 陈辉,张伟平,顾祥林.高应变率下锈蚀钢筋力学性能试验研究[J].建筑材料学报,2013,16(5):869-875.
  Chen Hui, Zhang Weiping, Gu Xianglin. Experimental study on mechanical properties of corroded steel bars under high strain rates [J]. Journal of Building Materials, 2013, 16(5): 869-875.(in Chinese)
[2] Appuhamy J M R S, Kaita T, Ohga M, et al. Prediction of residual strength of corroded tensile steel plates[J]. International Journal of Steel Structures, 2011, 11(1): 65-79. DOI:10.1007/s13296-011-1006-6.
[3] Garbatov Y, Guedes Soares C, Parunov J, et al. Tensile strength assessment of corroded small scale specimens[J]. Corrosion Science, 2014, 85: 296-303. DOI:10.1016/j.corsci.2014.04.031.
[4] Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(1): 81-98. DOI:10.1016/j.ijmecsci.2004.02.006.
[5] McClintock F A. A criterion for ductile fracture by the growth of holes [J]. Journal of Applied Mechanics, 1968, 35(2): 363-371.
[6] Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields [J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 201-217. DOI:10.1016/0022-5096(69)90033-7.
[7] Hancock J W, Mackenzie A C. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states[J]. Journal of the Mechanics and Physics of Solids, 1976, 24(2): 147-160. DOI:10.1016/0022-5096(76)90024-7.
[8] Kanvinde A M, Deierlein G G. Finite-element simulation of ductile fracture in reduced section pull-plates using micromechanics-based fracture models [J]. Journal of Structural Engineering, 2007, 133(5): 656-664. DOI:10.1061/(asce)0733-9445(2007)133:5(656).
[9] Kanvinde A M, Deierlein G G. Void growth model and stress modified critical strain model to predict ductile fracture in structural steels [J]. Journal of Structural Engineering, 2006, 132(12): 1907-1918. DOI:10.1061/(asce)0733-9445(2006)132:12(1907).
[10] Kanvinde A M, Fell B V, Gomez I R, et al. Predicting fracture in structural fillet welds using traditional and micromechanical fracture models [J]. Engineering Structures, 2008, 30(11): 3325-3335. DOI:10.1016/j.engstruct.2008.05.014.
[11] Wang Y, Zhou H, Shi Y, et al. Fracture prediction of welded steel connections using traditional fracture mechanics and calibrated micromechanics based models [J]. International Journal of Steel Structures, 2011, 11(3): 351-366. DOI:10.1007/s13296-011-3010-2.
[12] 王伟,廖芳芳,陈以一.基于微观机制的钢结构节点延性断裂预测与裂后路径分析[J].工程力学,2014,31(3):101-108,115.
  Wang Wei, Liao Fangfang, Chen Yiyi. Ductile fracture prediction and post-fracture path tracing of steel connections based on micromechanics-based fracture criteria [J]. Engineering Mechanics, 2014, 31(3): 101-108,115.(in Chinese)
[13] 全国金属与非金属覆盖层标准化技术委员会. GB/T 10125—2012人造气氛腐蚀试验-盐雾试验[S]. 北京: 中国标准出版社,2012.
[14] Xu S, Wang Y, Xue Q. Evaluation indicators and extraction method for pitting corrosion of structural steel [J]. Journal of Harbin Institute of Technology(New Series), 2015, 22(3): 15-21.
[15] 全国钢标准化技术委员会. GB/T 228—2010金属材料拉伸试验第1部分:室温试验方法[S].北京:中国标准出版社,2010.
[16] Yu H L, Jeong D Y. Application of a stress triaxiality dependent fracture criterion in the finite element analysis of unnotched Charpy specimens [J]. Theoretical and Applied Fracture Mechanics, 2010, 54(1): 54-62. DOI:10.1016/j.tafmec.2010.06.015.
[17] 贾东,黄西成,莫军.基于应变路径和分布效应的应力三轴度确定方法[J].科学技术与工程,2013,13(10):2625-2629,2634. DOI:10.3969/j.issn.1671-1815.2013.10.002.
  Jia Dong, Huang Xicheng, Mo Jun. A method to determine stress triaxiality based on strain path and distribution effect[J]. Science Technology and Engineering, 2013, 13(10): 2625-2629,2634. DOI:10.3969/j.issn.1671-1815.2013.10.002.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2015-11-08.
作者简介: 徐善华(1963—),男,博士,教授,博士生导师, xushanhua@163.com.
基金项目: 国家自然科学基金资助项目(51378417)、国家重点研发计划资助项目(2016YFC0701305).
引用本文: 徐善华,王皓,苏磊,等.考虑点蚀损伤的锈蚀钢板延性退化[J].东南大学学报(自然科学版),2016,46(6):1257-1263. DOI:10.3969/j.issn.1001-0505.2016.06.025.
更新日期/Last Update: 2016-11-20