[1]豆飞,潘晓军,秦勇,等.基于云模型的城市轨道交通车站客流控制触发判别方法[J].东南大学学报(自然科学版),2016,46(6):1318-1322.[doi:10.3969/j.issn.1001-0505.2016.06.035]
 Dou Fei,Pan Xiaojun,Qin Yong,et al.Identification method for passenger inflow control in urban rail transit station based on cloud model[J].Journal of Southeast University (Natural Science Edition),2016,46(6):1318-1322.[doi:10.3969/j.issn.1001-0505.2016.06.035]
点击复制

基于云模型的城市轨道交通车站客流控制触发判别方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第6期
页码:
1318-1322
栏目:
交通运输工程
出版日期:
2016-11-20

文章信息/Info

Title:
Identification method for passenger inflow control in urban rail transit station based on cloud model
作者:
豆飞123潘晓军2秦勇1张欣3贾利民1
1北京交通大学交通运输学院, 北京 100044; 2北京市地铁运营有限公司, 北京 100044; 3北京市地铁运营有限公司地铁运营技术研发中心, 北京 102208
Author(s):
Dou Fei123 Pan Xiaojun2 Qin Yong1 Zhang Xin3 Jia Limin1
1School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
2Beijing Mass Transit Railway Operation Co., Ltd., Beijing 100044, China
3Technology Research and Development Center Affiliated with Beijing Mass Transit Railway Operation Co., Ltd., Beijing 102208, China
关键词:
城市轨道交通 客流状态 客流控制 触发条件判别 云模型
Keywords:
urban rail transit passenger inflow state passenger inflow control trigger condition discrimination cloud model
分类号:
U239.5
DOI:
10.3969/j.issn.1001-0505.2016.06.035
摘要:
根据车站三级客流控制的特点分析了城市轨道交通车站设施设备的类别及乘客聚集程度判断指标,研究了城市轨道交通车站各主要设施设备客流状态级别的划分.然后,基于云模型的合成理论,构建了车站主要设施设备不同客流状态级别对应的模板云模型和实测设施设备客流状态合成指标云模型, 通过计算两者之间的相似程度,提出了一种基于云模型的城市轨道交通车站客流控制触发判别方法.最后,以一级客流控制触发判别的关键观测点——站台为例,验证所提方法的有效性.结果表明,利用该方法能够准确地判别当前客流状态,有助于管理者根据客流状态及时采取相应的客流控制措施.
Abstract:
The station facility category of urban rail transit and the index of passenger aggregation degree were analyzed according to the features of three-level passenger flow control. The passenger inflow state levels of station facilities of urban rail transit were divided. Then, the template cloud model with different passenger inflow state levels and the synthetic index cloud model of the passenger inflow state measured by facilities were developed based on the synthesis theory of the cloud model. The identification method for passenger inflow control was proposed by calculating the similarity degree between the template cloud model and the synthetic index cloud model. Finally, the station, the key observation point of the first order passenger inflow control trigger discrimination, was taken as a case to verify the validity of the proposed method. The results show that the proposed method can accurately identify the current passenger inflow state, thus helping the manager timely take corresponding passenger inflow control measure according to the passenger inflow state.

参考文献/References:

[1] 康亚舒. 城市轨道交通车站客流控制方案的研究[D]. 北京:北京交通大学交通运输学院, 2014.
[2] 谢玮. 城市轨道交通换乘站客流控制方法研究[D]. 北京:北京交通大学交通运输学院, 2012.
[3] Lam W H K, Cheung C Y. Pedestrian speed/flow relationships for walking facilities in Hong Kong[J]. Journal of Transportation Engineering, 2000, 126(4): 343-349. DOI:10.1061/(asce)0733-947x(2000)126:4(343).
[4] Cheung C Y, Lam W H K. Pedestrian route choices between escalator and stairway in MTR stations[J]. Journal of Transportation Engineering, 1998, 124(3): 277-285. DOI:10.1061/(asce)0733-947x(1998)124:3(277).
[5] Lee J Y S, Lam W H K, Wong S C. Pedestrian simulation model for Hong Kong underground stations[C]//Proceedings of 2001 IEEE Intelligent Transportation Systems. Oakland, CA, USA, 2001:554-558. DOI:10.1109/itsc.2001.948719.
[6] 王久亮. 城市轨道交通车站设施设备服务水平分级与能力计算方法研究[D]. 北京:北京交通大学交通运输学院, 2011.
[7] 美国交通运输研究委员会. 公共交通通行能力和服务质量手册(原著第二版)[M]. 杨晓光, 等译. 北京:中国建筑工业出版社, 2010: 321-330.
[8] Li D, Meng H, Shi X. Membership clouds and membership cloud generators[J]. Journal of Computer Research & Development, 1995, 32(6): 15-20.
[9] 李德毅, 刘常昱. 论正态云模型的普适性 [J]. 中国工程科学, 2004, 6(8): 28-34.
  Li Deyi, Liu Changyu. Study on the universality of the normal cloud model[J]. Engineering Science, 2004, 6(8): 28-34.(in Chinese)
[10] 孟晖, 王树良, 李德毅. 基于云变换的概念提取及概念层次构建方法[J]. 吉林大学学报(工学版), 2010, 40(3):782-787.
  Meng Hui, Wang Shuliang, Li Deyi. Concept extraction and concept hierarchy construction based on cloud transformation[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(3):782-787.(in Chinese)
[11] 周继彪, 陈红, 闫彬,等. 基于云模型的地铁换乘枢纽拥挤度辨识方法[J]. 吉林大学学报(工学版), 2016, 46(1):100-107.
  Zhou Jibiao, Chen Hong, Yan Bin, et al. An identification method of pedestrian crowding degree in metro transfer hub based on the normal cloud model[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(1):100-107.(in Chinese)

相似文献/References:

[1]韩豫,成虎.城市轨道交通运营安全管理协同机制[J].东南大学学报(自然科学版),2012,42(1):177.[doi:10.3969/j.issn.1001-0505.2012.01.033]
 Han Yu,Cheng Hu.Coordination mechanism for operation safety management of urban mass transit[J].Journal of Southeast University (Natural Science Edition),2012,42(6):177.[doi:10.3969/j.issn.1001-0505.2012.01.033]
[2]石俊刚,周峰,朱炜,等.基于AFC数据的城轨乘客出行路径选择比例估计方法[J].东南大学学报(自然科学版),2015,45(1):184.[doi:10.3969/j.issn.1001-0505.2015.01.032]
 Shi Jungang,Zhou Feng,Zhu Wei,et al.Estimation method of passenger route choice proportion in urban rail transit based on AFC data[J].Journal of Southeast University (Natural Science Edition),2015,45(6):184.[doi:10.3969/j.issn.1001-0505.2015.01.032]
[3]李曼,王艳辉,贾利民.城市轨道交通车站客流模态与控制策略[J].东南大学学报(自然科学版),2015,45(6):1203.[doi:10.3969/j.issn.1001-0505.2015.06.032]
 Li Man,Wang Yanhui,Jia Limin.Passenger flow modes and control strategies in urban rail transit station[J].Journal of Southeast University (Natural Science Edition),2015,45(6):1203.[doi:10.3969/j.issn.1001-0505.2015.06.032]
[4]曹志超,袁振洲,李得伟.城市轨道交通同步协调的优化模型[J].东南大学学报(自然科学版),2016,46(1):221.[doi:10.3969/j.issn.1001-0505.2016.01.036]
 Cao Zhichao,Yuan Zhenzhou,Li Dewei.Synchronization and coordination optimization model of urban rail transit[J].Journal of Southeast University (Natural Science Edition),2016,46(6):221.[doi:10.3969/j.issn.1001-0505.2016.01.036]
[5]李曼,王艳辉,晋君,等.基于路网客流模态的城市轨道交通网络拥堵演变机理[J].东南大学学报(自然科学版),2017,47(2):404.[doi:10.3969/j.issn.1001-0505.2017.02.033]
 Li Man,Wang Yanhui,Jin Jun,et al.Network congestion evolution law of urban rail transit based on network passenger flow mode[J].Journal of Southeast University (Natural Science Edition),2017,47(6):404.[doi:10.3969/j.issn.1001-0505.2017.02.033]
[6]李思杰,徐瑞华,杨儒冬.基于运力协调的城市轨道交通网络列车运行计划优化[J].东南大学学报(自然科学版),2017,47(5):1048.[doi:10.3969/j.issn.1001-0505.2017.05.033]
 Li Sijie,Xu Ruihua,Yang Rudong.Optimizing urban rail transit network operation plans based on transport capacity coordination[J].Journal of Southeast University (Natural Science Edition),2017,47(6):1048.[doi:10.3969/j.issn.1001-0505.2017.05.033]

备注/Memo

备注/Memo:
收稿日期: 2016-01-25.
作者简介: 豆飞(1986—),男,博士生;贾利民(联系人),男,教授,博士生导师,jialm@vip.sina.com.
基金项目: 国家自然科学基金资助项目(61374157)、北京市地铁运营有限公司科研资助项目(2015000501000007)、北京市博士后工作经费资助项目(2015ZZ-151).
引用本文: 豆飞,潘晓军,秦勇,等.基于云模型的城市轨道交通车站客流控制触发判别方法[J].东南大学学报(自然科学版),2016,46(6):1318-1322. DOI:10.3969/j.issn.1001-0505.2016.06.035.
更新日期/Last Update: 2016-11-20