[1]樊继豪,陈汉武,李荣贵.非对称量子乘积-张量积码[J].东南大学学报(自然科学版),2017,47(1):18-22.[doi:10.3969/j.issn.1001-0505.2017.01.004]
 Fan Jihao,Chen Hanwu,Li Ronggui.Asymmetric quantum product and tensor product codes[J].Journal of Southeast University (Natural Science Edition),2017,47(1):18-22.[doi:10.3969/j.issn.1001-0505.2017.01.004]
点击复制

非对称量子乘积-张量积码()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第1期
页码:
18-22
栏目:
信息与通信工程
出版日期:
2017-01-18

文章信息/Info

Title:
Asymmetric quantum product and tensor product codes
作者:
樊继豪1陈汉武12李荣贵1
1东南大学计算机科学与工程学院, 南京 211189; 2东南大学计算机网络和信息集成教育部重点实验室, 南京 211189
Author(s):
Fan Jihao1 Chen Hanwu12 Li Ronggui1
1School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
2Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing 211189, China
关键词:
量子纠错码 非对称量子纠错码 乘积码 张量积码
Keywords:
quantum error-correcting code asymmetric quantum error-correcting code product code tensor product code
分类号:
TN911
DOI:
10.3969/j.issn.1001-0505.2017.01.004
摘要:
针对绝大多数量子信道模型中发生量子比特翻转错误概率远小于发生量子相位翻转错误概率这一非对称的物理现象,基于经典乘积码与张量积码构造了非对称量子乘积-张量积码. 利用经典乘积码来纠正量子比特翻转错误,利用经典张量积码来纠正量子相位翻转错误.当2个组成子码皆满足对偶包含条件时,经典乘积码与张量积码满足对偶包含条件.基于3类满足对偶包含条件的经典纠错码,构造了具有新的参数非对称量子纠错码. 结果表明,该类非对称量子乘积-张量积码具有显著的非对称性.通过与已存在的非对称量子纠错码对比可以发现,所构造的部分非对称量子乘积-张量积码的参数优于其他已知的非对称量子纠错码.
Abstract:
To solve the physical phenomenon that the probability of the quantum qubit-flipping errors is much less than that of the phase-flipping errors in many quantum channel models, the asymmetric quantum error-correcting codes(AQECCs), called as asymmetric quantum product and tensor product codes, are constructed based on classical product codes and tensor product codes. The product codes are used to correct the qubit-flipping errors and the tensor product codes are used to correct the phase-flipping errors. If the two component codes satisfy the dual containing conditions, then the resultant product codes and tensor product codes satisfy the dual containing conditions. A new class of AQECCs is constructed based on three classes of classical error-correcting codes satisfying the dual containing restrictions. The results show that that the proposed asymmetric quantum product and tensor product codes have obvious asymmetries. Compared with the known AQECCs, parts of the asymmetric quantum product and tensor product codes have better parameters than the known AQECCs.

参考文献/References:

[1] Shor P W. Scheme for reducing decoherence in quantum computer memory[J]. Physical Review A, 1995, 52(4): R2493-R2496. DOI:10.1103/physreva.52.r2493.
[2] Gottesman D. Stabilizer codes and quantum error correction[D]. Pasadena, CA, USA: California Institute of Technology, 1997.
[3] 樊继豪,陈汉武,阮越,等. 基于经典Goppa码的非对称量子稳定子码构造[J].中国科学: 信息科学, 2013, 43(3): 407-417.
  Fan Jihao, Chen Hanwu, Ruan Yue, et al. Constructions of asymmetric quantum stabilizer codes based on classical Goppa codes[J]. Scientia Sinica Informationis, 2013, 43(3): 407-417.(in Chinese)
[4] MacWilliams F J, Sloane N J A. The theory of error-correcting codes[M]. Amsterdam, the Netherlands: North-Holland,1981: 568-571.
[5] 肖海林, 欧阳缮, 谢武. 量子 Turbo 乘积码[J]. 物理学报, 2011, 60(2): 15-21.
  Xiao HaiLin,Ouyang Shan,Xie Wu. Quantum Turbo product codes[J]. Acta Physica Sinica, 2011, 60(2): 15-21.(in Chinese)
[6] Wolf J K. On codes derivable from the tensor product of check matrices[J]. IEEE Transactions on Information Theory, 1965, 11(2): 281-284. DOI:10.1109/tit.1965.1053771.
[7] Grassl M, Rötteler M. Quantum block and convolutional codes from self-orthogonal product codes[C]//Proceedings of the IEEE International Symposium on Information Theory. Adelaide, Australia, 2005: 1018-1022.
[8] La Guardia G G. Asymmetric quantum product codes[J]. International Journal of Quantum Information, 2012, 10(1): 1250005. DOI:10.1142/s0219749912500050.
[9] Nickl H, Hagenauer J, Burkert F. Approaching Shannon’s capacity limit by 0.27 dB using simple Hamming codes[J]. IEEE Communications Letters, 1997, 1(5): 130-132. DOI:10.1109/4234.625034.
[10] Aly S A, Klappenecker A, Sarvepalli P K. On quantum and classical BCH codes[J]. IEEE Transactions on Information Theory, 2007, 53(3): 1183-1188.DOI:10.1109/TIT.2006.890730.
[11] Chen Bocong, Ling San, Zhang Guanghui. Application of constacyclic codes to quantum MDS codes[J]. IEEE Transactions on Information Theory, 2015, 61(3): 1474-1484. DOI:10.1007/s10773-014-2204-8.
[12] Kai X, Zhu S, Li P. Constacyclic codes and some new quantum MDS codes[J]. IEEE Transactions on Information Theory, 2014, 60(4): 2080-2086. DOI:10.1109/tit.2014.2308180.
[13] Nielsen M A, Chuang I L. 量子计算与量子信息 [M]. 北京: 清华大学出版社,2015: 425-493.
[14] La Guardia G G. Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes[J]. Quantum Information Processing, 2012, 11(2): 591-604. DOI:10.1007/s11128-011-0269-3.

相似文献/References:

[1]陈汉武,肖芳英.基于初等变换的量子码构造[J].东南大学学报(自然科学版),2011,41(5):934.[doi:10.3969/j.issn.1001-0505.2011.05.008]
 Chen Hanwu,Xiao Fangying.Construction of quantum codes based on elementary transformations[J].Journal of Southeast University (Natural Science Edition),2011,41(1):934.[doi:10.3969/j.issn.1001-0505.2011.05.008]

备注/Memo

备注/Memo:
收稿日期: 2016-07-10.
作者简介: 樊继豪(1987—),男,博士生;陈汉武(联系人),男,博士,教授,博士生导师,hw_chen@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61170321)、高等学校博士学科点专项科研基金资助项目(20110092110024)、江苏省自然科学基金资助项目(BK20140823)、江苏省普通高校研究生科研创新计划资助项目(CXZZ13_0105).
引用本文: 樊继豪,陈汉武,李荣贵.非对称量子乘积-张量积码[J].东南大学学报(自然科学版),2017,47(1):18-22. DOI:10.3969/j.issn.1001-0505.2017.01.004.
更新日期/Last Update: 2017-01-20