[1]纪光菊,陈亚平,吴嘉峰,等.溶液加冷剂回热双吸收式热变换器循环性能分析[J].东南大学学报(自然科学版),2017,47(1):85-90.[doi:10.3969/j.issn.1001-0505.2017.01.016]
 Ji Guangju,Chen Yaping,Wu Jiafeng,et al.Performance analysis of double absorption heat transformers with solution and coolant heat regeneration cycle[J].Journal of Southeast University (Natural Science Edition),2017,47(1):85-90.[doi:10.3969/j.issn.1001-0505.2017.01.016]
点击复制

溶液加冷剂回热双吸收式热变换器循环性能分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第1期
页码:
85-90
栏目:
能源与动力工程
出版日期:
2017-01-18

文章信息/Info

Title:
Performance analysis of double absorption heat transformers with solution and coolant heat regeneration cycle
作者:
纪光菊陈亚平吴嘉峰吉鸽
东南大学能源与环境学院, 南京 210096; 东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Ji Guangju Chen Yaping Wu Jiafeng Ji Ge
School of Energy and Environment, Southeast University, Nanjing 210096, China
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
双吸收式热变换器 热交换器 性能系数 效率 回热
Keywords:
double absorption heat transformer heat exchanger coefficient of performance exergy efficiency heat regeneration
分类号:
TB616
DOI:
10.3969/j.issn.1001-0505.2017.01.016
摘要:
基于溶液回热双吸收式热变换器循环,提出了一种溶液加冷剂回热双吸收式热变换器循环方案,即在溶液回热双吸收式热变换器的吸收蒸发器稀溶液出口增加了一个溶液与冷剂间的热交换器.计算并比较了吸收蒸发器稀溶液出口溶液无回热、有溶液回热以及同时有溶液和冷剂回热3种双吸收式热变换器循环的性能系数和效率.结果表明,溶液加冷剂回热双吸收式热变换器循环不仅具有较宽的吸收蒸发温度变化范围,而且在整个吸收蒸发器操作范围内可使循环性能系数和效率进一步提升,当吸收温度、发生温度、冷凝温度和吸收蒸发温度分别为120~150,70, 25和80~115 ℃时,性能系数和效率较有溶液回热双吸收式热变换器循环增加约2.5%~3.5%.同时分析了吸收温度、冷凝温度、发生温度和吸收蒸发温度变化时吸收蒸发器稀溶液出口无回热、有溶液回热以及同时有溶液和冷剂回热3种循环的性能系数和效率的变化趋势.
Abstract:
Based on the cycle of double absorption heat transformer with solution heat regeneration, a modified cycle of double absorption heat transformer with both solution and coolant heat regeneration was proposed by adding a heat exchanger between solution and coolant at the outlet of dilute solution of the absorber-evaporator. Both coefficients of performance(COP)and exergy efficiencies of three kinds of cycles in double absorption heat transformers without heat regeneration, with solution heat regeneration and with both solution and coolant heat regeneration at the outlet of dilute solution of the absorber-evaporator were calculated and compared. The results show that the new cycle of double absorption heat transformer with solution and coolant heat regeneration has a wider operating range of absorption-evaporation temperature and higher COP and exergy efficiency in the discussed scope. When the temperatures of absorption, generation, condensation and absorption-evaporation are 120 to 150, 70, 25 and 80 to 115 ℃, respectively, the COP and exergy efficiencies of the new cycle increase by about 2.5% to 3.5% compared with those of the one with solution heat regeneration only. The variation trends of COP and exergy efficiency of the three cycles versus the temperatures of absorption-evaporation, condensation, generation and absorption are analyzed.

参考文献/References:

[1] Parham K, Khamooshi M, Tematio D B K, et al. Absorption heat transformers: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2014, 34: 430-452. DOI:10.1016/j.rser.2014.03.036.
[2] Horuz I, Kurt B. Absorption heat transformers and an industrial application[J]. Renewable Energy, 2010, 35(10): 2175-2181. DOI:10.1016/j.renene.2010.02.025.
[3] Rivera W, Best R, Hernandez J, et al. Thermodynamic study of advanced absorption heat transformers—Ⅱ: Double absorption configurations [J]. Heat Recovery Systems & CHP, 1994, 14(2): 185-193. DOI:10.1016/0890-4332(94)90009-4.
[4] Martínez H, Rivera W. Energy and exergy analysis of a double absorption heat transformer operating with water/lithium bromide [J]. International Journal of Energy Research, 2009, 33(7): 662-674. DOI:10.1002/er.1502.
[5] Zhao Z C, Zhou F W, Zhang X D, el al. The thermodynamic performance of a new solution cycle in double absorption heat transformer using water/lithium bromide as the working fluids [J]. International Journal of Refrigeration, 2003, 26(3): 315-320. DOI:10.1016/s0140-7007(02)00114-7.
[6] Zhao Z C, Ma Y P, Chen J B. Thermodynamic performance of a new type of double absorption heat transformer [J]. Applied Thermal Engineering, 2003, 23(18): 2407-2414. DOI:10.1016/j.applthermaleng.2003.08.006.
[7] 张晓冬,李健丰.具有新的溶液循环双吸收式热变换器分析[J].大连理工大学学报,2007,47(3):333-337. DOI:10.3321/j.issn:1000-8608.2007.03.005.
  Zhang Xiaodong, Li Jianfeng. Exergy analysis of double absorption heat transformers with a new solution cycle [J]. Journal of Dalian University of Technology, 2007, 47(3): 333-337. DOI:10.3321/j.issn:1000-8608.2007.03.005.(in Chinese)
[8] Donnellan P, Byrne E, Cronin K. Internal energy and exergy recovery in high temperature application absorption heat transformers [J]. Applied Thermal Engineering, 2013, 56(1/2): 1-10. DOI:10.1016/j.applthermaleng.2013.03.027.
[9] Meza M, Marquez-Nolasco A, Huicochea A, et al. Experimental study of an absorption heat transformer with heat recycling to the generator [J]. Experimental Thermal and Fluid Science, 2014, 53: 171-178. DOI:10.1016/j.expthermflusci.2013.12.002.
[10] Barragán R R M, Gómez V M A, García-Gutiérrez A. Performance modelling of single and double absorption heat transformers [J]. Current Applied Physics, 2010, 10(2): S244-S248. DOI:10.1016/j.cap.2009.11.052.
[11] He Z B, Zhao Z C, Zhang X D, et al. Thermodynamic properties of new heat pump working pairs: 1,3-dimethylimidazolium dimethylphosphate and water, ethanol and methanol [J]. Fluid Phase Equilibria, 2010, 298(1): 83-91. DOI:10.1016/j.fluid.2010.07.005.
[12] 郝兆龙,马学虎,兰忠,等.高温LiBr双吸收式热变换器分析[J].大连理工大学学报,2013,53(3):327-332.
  Hao Zhaolong, Ma Xuehu, Lan Zhong, et al. Exergy analysis of a high temperature water-lithium bromide double effect absorption heat transformer [J]. Journal of Dalian University of Technology, 2103, 53(3): 327-332.(in Chinese)
[13] Sun D W. Thermodynamic design data and optimum design maps for absorption refrigeration systems [J]. Applied Thermal Engineering, 1997, 17(3): 211-221. DOI:10.1016/s1359-4311(96)00041-5.
[14] Kaita Y. Thermodynamic properties of lithium bromide-water solutions at high temperatures [J]. International Journal of Refrigeration, 2001, 24(5): 374-390. DOI:10.1016/s0140-7007(00)00039-6.

相似文献/References:

[1]黎立新,季建刚,乐维健,等.环保型CO2跨临界制冷系统[J].东南大学学报(自然科学版),2001,31(4):101.[doi:10.3969/j.issn.1001-0505.2001.04.024]
 Li Lixin,Ji Jiangang,Le Weijian,et al.Environmental Friendly Trans-Critical CO2 Refrigerant System[J].Journal of Southeast University (Natural Science Edition),2001,31(1):101.[doi:10.3969/j.issn.1001-0505.2001.04.024]

备注/Memo

备注/Memo:
收稿日期: 2016-06-08.
作者简介: 纪光菊(1991—),女,硕士生;陈亚平(联系人),男,博士,教授,博士生导师,ypgchen@sina.com.
基金项目: 国家自然科学基金资助项目(51276035).
引用本文: 纪光菊,陈亚平,吴嘉峰,等.溶液加冷剂回热双吸收式热变换器循环性能分析[J].东南大学学报(自然科学版),2017,47(1):85-90. DOI:10.3969/j.issn.1001-0505.2017.01.016.
更新日期/Last Update: 2017-01-20