[1]张爱林,叶全喜,詹欣欣,等.装配式零初始索力摩擦耗能复位支撑受力机理分析[J].东南大学学报(自然科学版),2017,47(1):142-149.[doi:10.3969/j.issn.1001-0505.2017.01.025]
 Zhang Ailin,Ye Quanxi,Zhan Xinxin,et al.Force mechanism analysis of fabricated friction dissipation re-centering brace with zero initial cable force[J].Journal of Southeast University (Natural Science Edition),2017,47(1):142-149.[doi:10.3969/j.issn.1001-0505.2017.01.025]
点击复制

装配式零初始索力摩擦耗能复位支撑受力机理分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第1期
页码:
142-149
栏目:
土木工程
出版日期:
2017-01-18

文章信息/Info

Title:
Force mechanism analysis of fabricated friction dissipation re-centering brace with zero initial cable force
作者:
张爱林12叶全喜1詹欣欣1马晓飞1
1北京工业大学建筑工程学院, 北京 100124; 2北京工业大学北京市高层和大跨度预应力钢结构工程技术研究中心, 北京 100124
Author(s):
Zhang Ailin12 Ye Quanxi1 Zhan Xinxin1 Ma Xiaofei1
1College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
2Beijing Engineering Research Center of High-Rise and Large-Span Prestressed Steel Structure, Beijing University of Technology, Beijing 100124, China
关键词:
零初始索力 复位功能 预应力损失 黄铜-槽孔钢摩擦板 受力机理
Keywords:
zero initial cable force re-centering function loss of prestress brass-slotted steel friction plate force mechanism
分类号:
TU352.1
DOI:
10.3969/j.issn.1001-0505.2017.01.025
摘要:
为解决结构大震后残余变形过大以及复位索体预应力损失的问题,提出了一种具有耗能及复位功能的装配式零初始索力摩擦耗能复位支撑.对该支撑的工作机理、恢复力模型进行了理论推导,应用ABAQUS有限元软件对其力学性能进行了模拟分析,并将理论推导、有限元模拟与试验分析得到的结果进行了对比.结果表明:利用理论推导、有限元模拟及试验分析得到的滞回曲线吻合较好,加载过程中该支撑无刚度退化现象,索体内力呈线性变化,无内力损失,说明该支撑采用2组初始索力为0 kN的索体交替受力构造,可以有效地避免索体的预应力损失问题;该支撑滞回曲线饱满,耗能规律稳定,表明黄铜-槽孔钢摩擦板耗能器可以提供稳定的耗能能力;该支撑卸载至位移零点时,理论推导、试验分析及有限元模拟得到的残余荷载分别为0,-0.12,0 kN,说明该支撑具有良好的复位能力.
Abstract:
To solve the problem of the excessive residual deformation after severe quake and the prestress loss of re-centering cables,a fabricated friction dissipation re-centering brace with zero initial cable force(FZFRB), which has energy dissipation and re-centering capacity, was put forward. The working mechanism and restoring force models of the brace were carried out by theoretical derivation. The mechanical properties were simulated by the ABAQUS software. The comparative analysis of the theoretical derivation results, the finite element simulation results and the experimental results was conducted. The results show that the hysteresis curves obtained by theoretical derivation, finite element simulation and experiments are in good agreement. There is no stiffness degradation during the loading process. The internal force of the cable varies linearly and there is no internal force loss. Therefore, the structure of this brace with alternating bearing of two sets of cables with the initial force of 0 kN can effectively avoid prestress loss. The hysteresis curves of this brace is full and the energy consumption law is stable, exhibiting that the brass-slotted steel friction plate can provide stable energy consumption. When the displacement of the brace is zero after unloading, the residual loads obtained by theoretical derivation, finite element simulation and experiments are 0,-0.12, 0 kN, respectively, proving that this brace has good re-centering capability.

参考文献/References:

[1] Black R G. Inelastic buckling of steel struts under cyclic load reversals[D]. Berkeley,California, USA:College of Engineering,UC Berkeley, 1980.
[2] Gugeli H. Inelastic cyclic behavior of steel bracing members[D]. Ann Arbor, Michigan, USA: Department of Civil Engineering,the University of Michigan, 1982.
[3] Wakabayashi M, Nakamura T. Experimental study of elastic-plastic properties of PC wall panel with built-in insulating brace[C]//Summaries of Technical Papers of Annual Meeting. Tokyo, Japan: Architectural Institute of Japan, 1973: 1041-1044.
[4] Yoshino T, Kano J. Experimental study on shear wall with braces: Part 2[C]//Summaries of Technical Papers of Annual Meeting. Tokyo, Japan: Architectural Institute of Japan, 1971, 11: 403-404.
[5] Christopoulos C, Pampanin S, Priestley M J N. Performance based seismic response of frame structures including residual deformations. Part 1: Single-degree of freedom systems[J]. Journal of Earthquake Engineering, 2003, 7(1): 97-118. DOI:10.1080/13632460309350443.
[6] Erochko J, Christopoulos C, Tremblay R, et al. Residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE7-05[J]. Journal of Structural Engineering, 2011(5):589-599.DOI:10.1061/(asce)st.1943-541x.0000296.
[7] 张爱林, 赵亮, 刘学春, 等. 钢框架预应力支撑结构拉索初始预拉力设计方法[J]. 北京工业大学学报, 2014, 40(12): 1804-1809,1819.
  Zhang Ailin, Zhao Liang, Liu Xuechun, et al. Design method of initial tension of cables in prestress-braced steel frame structure[J]. Journal of Beijing University of Technology, 2014, 40(12): 1804-1809,1819.(in Chinese)
[8] Hou X, Tagawa H. Displacement-restraint bracing for seismic retrofit of steel moment frames[J]. Journal of Constructional Steel Research, 2009, 65(5): 1096-1104. DOI:10.1016/j.jcsr.2008.11.008.
[9] 刘璐, 吴斌, 李伟, 等. 一种新型自复位防屈曲支撑的拟静力试验[J]. 东南大学学报(自然科学版), 2012, 42(3): 536-541. DOI:10.3969/j.issn.1001-0505.2012.03.028.
  Liu Lu, Wu Bin, Li Wei, et al. Cyclic tests of novel self-centering buckling-restrained brace[J]. Journal of Southeast University(Natural Science Edition), 2012, 42(3): 536-541.DOI:10.3969/j.issn.1001-0505.2012.03.028.(in Chinese)
[10] Zhang A L, Zhang Y X, Li R, et al. Cyclic behavior of a prefabricated self-centering beam-column connection with a bolted web friction device[J]. Engineering Structures, 2016, 111: 185-198. DOI:10.1016/j.engstruct.2015.12.025.
[11] McCormick J, Aburano H, Ikennaga M, et al. Permissible residual deformation levels for building structures considering both safety and human elements[C]//Proceedings of the 14th World Conference on Earthquake Engineering. Beijing, 2008: 12-17.
[12] 中华人民共和国建设部.GB 50017-2003 钢结构设计规范[S]. 北京: 中国计划出版社, 2003.
[13] 庄茁. 基于ABAQUS的有限元分析和应用[M]. 北京:清华大学出版社, 2009:135-139.
[14] Wolski M E. Experimental evaluation of a bottom flange friction device for a self-centering seismic moment resistant frame with posttensioned steel moment connections[D]. Lehigh,Pennsylvania,USA:College of Civil Engineering, Lehigh University, 2006.
[15] Wolski M E, Ricles J M, Sause R. Experimental study of a self-centering beam column connection with bottom flange friction device[J]. Journal of Structural Engineering, 2009, 135(5):479-488. DOI:10.1061/(asce)st.1943-541x.0000006.

备注/Memo

备注/Memo:
收稿日期: 2016-05-18.
作者简介: 张爱林(1961—),男,博士,教授,博士生导师, zhangal@bjut.edu.cn.
基金项目: 国家自然科学基金专项基金资助项目(51278009)、北京市自然科学基金重点资助项目(8131002).
引用本文: 张爱林,叶全喜,詹欣欣,等.装配式零初始索力摩擦耗能复位支撑受力机理分析[J].东南大学学报(自然科学版),2017,47(1):142-149. DOI:10.3969/j.issn.1001-0505.2017.01.025.
更新日期/Last Update: 2017-01-20