# [1]孙潇昊,缪林昌,林海山.不同埋深盾构隧道开挖面稳定问题数值模拟[J].东南大学学报(自然科学版),2017,47(1):164-169.[doi:10.3969/j.issn.1001-0505.2017.01.028] 　Sun Xiaohao,Miao Linchang,Lin Haishan.Numerical simulation research on excavation face stability of different depths of shield tunnel[J].Journal of Southeast University (Natural Science Edition),2017,47(1):164-169.[doi:10.3969/j.issn.1001-0505.2017.01.028] 点击复制 不同埋深盾构隧道开挖面稳定问题数值模拟() 分享到： var jiathis_config = { data_track_clickback: true };

47

2017年第1期

164-169

2017-01-18

## 文章信息/Info

Title:
Numerical simulation research on excavation face stability of different depths of shield tunnel

Author(s):
Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China

Keywords:

U45
DOI:
10.3969/j.issn.1001-0505.2017.01.028

Abstract:
By comparing with physical model tests, two-dimensional particle flow code(PFC2D)was used for numerical simulation of the tunnel excavation process to analyze soil failure mechanism under various buried depths and densities. First, the variations of the support force and the surface subsidence were studied and the results of model tests and numerical simulation were comparatively analyzed. Then, the limit support force was determined. Finally, the failure mechanism of the soil in front of the excavation face was further understood by utilizing PFC2D to study the soil arch effect. The results show that the changes of the supporting force and the ground settlement can be divided into two stages, and are not affected by the buried depth; the soil arching continues to be developed after the local failure, leading to the overall instability; when the depth is smaller, the soil arching fails to be formed, otherwise, the sliding zone and the soil arching region enlarge with the increase of the buried depth. The consistency of results of numerical simulation and physical test verifies the feasibility of particle flow simulation with longitudinal surface. Therefore, PFC2D can be used in depth for particle flow simulation.

## 参考文献/References:

[1] 丁春林,周书明,周顺华.盾构施工对隧道围岩内力和地层变形的影响[J].中国公路学报,2002,15(4):62-65. DOI:10.3321/j.issn:1001-7372.2002.04.017.
Ding Chunlin, Zhou Shuming, Zhou Shunhua. Shield construction’s influence on the surrounding rocks’ inner force for the tunnel and stratum deformation[J]. China Journal of Highway and Transport, 2002, 15(4): 62-65. DOI:10.3321/j.issn:1001-7372.2002.04.017.(in Chinese)
[2] 周小文,濮家骝.砂土中隧洞开挖引起的地面沉降试验研究[J].岩土力学,2002, 23(5):559-563. DOI:10.3969/j.issn.1000-7598.2002.05.007.
Zhou Xiaowen, Pu Jialiu. Centrifuge model test on ground settlement induced by tunneling in sandy soil[J]. Rock and Soil Mechanics, 2002, 23(5): 559-563. DOI:10.3969/j.issn.1000-7598.2002.05.007.(in Chinese)
[3] Fakhimi A, Carvalho F, Ishida T, et al. Simulation of failure around a circular opening in rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(4): 507-515. DOI:10.1016/s1365-1609(02)00041-2.
[4] 曾庆有,周健.不同墙体位移方式下被动土压力的颗粒流模拟[J]. 岩土力学, 2005,26(增刊1):43-47.
Zeng Qingyou, Zhou Jian. Analysis of passive earth pressure due to various wall movement by particle flow code(2D)[J]. Rock and Soil Mechanics, 2005, 26(S1): 43-47.(in Chinese)
[5] Funatsu T, Hoshino T, Sawae H, et al. Numerical analysis to better understand the mechanism of the effects of ground supports and reinforcements on the stability of tunnels using the distinct element method[J]. Tunnelling and Underground Space Technology, 2008, 23(5): 561-573. DOI:10.1016/j.tust.2007.10.003.
[6] Zhang C, Han K, Zhang D. Face stability analysis of shallow circular tunnels in cohesive-frictional soils[J]. Tunnelling and Underground Space Technology, 2015, 50: 345-357. DOI:10.1016/j.tust.2015.08.007.
[7] Lee Chung-Jung, Chiang Kuo-Hui, Kuo Chia-Ming. Ground movement and tunnel stability when tunneling in sandy ground[J]. Journal of the Chinese Institute of Engineers, 2004, 27(7): 1021-1032. DOI:10.1080/02533839.2004.9670957.
[8] Kirsch A. Experimental investigation of the face stability of shallow tunnels in sand[J]. Acta Geotechnica, 2010, 5(1): 43-62. DOI:10.1007/s11440-010-0110-7.
[9] 周国庆,周杰,陆勇,等.颗粒流程序(PFC2D)中阻尼参数的适用性研究[J].中国矿业大学学报,2011,40(5):667-672.
Zhou Guoqing, Zhou Jie, Lu Yong, et al. Selection of damping parameters used in a particle flow code(PFC2D)[J]. Journal of China University of Mining & Technology, 2011, 40(5): 667-672.(in Chinese)
[10] 朱伟,钟小春,加瑞.盾构隧道垂直土压力松动效应的颗粒流模拟[J].岩土工程学报,2008,30(5):750-754. DOI:10.3321/j.issn:1000-4548.2008.05.021.
Zhu Wei, Zhong Xiaochun, Jia Rui. Simulation on relaxation effect of vertical earth pressure for shield tunnels by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 750-754. DOI:10.3321/j.issn:1000-4548.2008.05.021.(in Chinese)
[11] 武军,廖少明,时振昊.考虑土拱效应的盾构隧道开挖面稳定性[J].同济大学学报(自然科学版),2015,43(2):213-220. DOI:10.11908/j.issn.0253-374x.2015.02.008.
Wu Jun, Liao Shaoming, Shi Zhenhao. Work face stability of shield tunnel considering arching effect[J]. Journal of Tongji University(Natural Science), 2015, 43(2): 213-220. DOI:10.11908/j.issn.0253-374x.2015.02.008.(in Chinese)

## 相似文献/References:

[1]朱逢斌,缪林昌.盾构隧道邻近建筑物施工的地面变形分析及预测[J].东南大学学报(自然科学版),2013,43(4):856.[doi:10.3969/j.issn.1001-0505.2013.04.034]
Zhu Fengbin,Miao Linchang.Analysis and prediction of ground deformation caused by shield tunnelling adjacent to existing building[J].Journal of Southeast University (Natural Science Edition),2013,43(1):856.[doi:10.3969/j.issn.1001-0505.2013.04.034]
[2]曹淞宇,王士民,刘川昆,等.裂缝位置对盾构隧道管片结构破坏形态的影响[J].东南大学学报(自然科学版),2020,50(1):120.[doi:10.3969/j.issn.1001-0505.2020.01.016]
Cao Songyu,Wang Shimin,Liu Chuankun,et al.Influence of crack location on failure mode of shield tunnel lining structure[J].Journal of Southeast University (Natural Science Edition),2020,50(1):120.[doi:10.3969/j.issn.1001-0505.2020.01.016]