[1]彭尔兴,章定文,周利,等.施氏假单胞菌应用于IPS技术的可行性试验研究[J].东南大学学报(自然科学版),2017,47(1):170-176.[doi:10.3969/j.issn.1001-0505.2017.01.029]
 Peng Erxing,Zhang Dingwen,Zhou Li,et al.Feasibility experiment on using pseudomonas stutzeri in IPS[J].Journal of Southeast University (Natural Science Edition),2017,47(1):170-176.[doi:10.3969/j.issn.1001-0505.2017.01.029]
点击复制

施氏假单胞菌应用于IPS技术的可行性试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第1期
页码:
170-176
栏目:
土木工程
出版日期:
2017-01-18

文章信息/Info

Title:
Feasibility experiment on using pseudomonas stutzeri in IPS
作者:
彭尔兴123章定文123周利4孙鹏程4
1东南大学交通学院, 南京 210096; 2东南大学江苏省城市地下工程与环境安全重点实验室, 南京 210096; 3南京水利科学研究院水利部土石坝破坏机理与防控技术重点实验室, 南京 210029; 4华东理工大学生物反应器工程国家重点实验室, 上海 200237
Author(s):
Peng Erxing123 Zhang Dingwen123 Zhou Li4 Sun Pengcheng4
1School of Transportation, Southeast University, Nanjing 210096, China
2Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing 210096, China
3Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-Rock Dam of Ministry of Water Resources, Nanjing Hydraulic Research Institute, Nanjing 210029, China
4State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
关键词:
IPS 施氏假单胞菌 反硝化作用 温度 pH值
Keywords:
induced partial saturation(IPS) pseudomonas stutzeri denitrification temperature pH
分类号:
TU411
DOI:
10.3969/j.issn.1001-0505.2017.01.029
摘要:
为探究利用施氏假单胞菌代谢产物——氮气加固可液化砂土的可行性,对该菌反硝化作用的条件与砂样中产气效能进行了研究,分析了不同碳源对NO-3-N与NO-2-N还原率的影响以及温度和初始pH值对其最终饱和度、平均产气速率、初始停滞期的影响,并确定了最优碳源、适用温度和初始pH值区间.试验结果表明,柠檬酸钠为最优碳源,该菌在21 h时对NO-3-N还原率达到100%,NO-2-N存在先累积后还原的过程,并伴有0.82 mmol/L残留浓度.该菌在4~30 ℃下均可产气.随温度升高,平均产气速率大幅增加,砂样最终饱和度略有降低.恒温20 ℃且初始pH值为5~9时,该菌可在砂样中顺利产气.中性及碱性环境下砂样的最终饱和度基本一致,酸性环境下砂样的最终饱和度随初始pH值的减小而降低,细菌在砂样中的平均产气速率随初始pH值的下降而减小.与已有微生物气法相比,将该菌应用于IPS技术中具有平均产气速率快、初始停滞期短、工艺简单等优点.
Abstract:
To explore the feasibility of the reinforcement of liquefiable sand by nitrogen, the metabolites of pseudomonas stutzeri, the denitrification condition and the gas production efficiency of soil are studied. The influences of different carbon sources on the reduction rates of NO-3-N and NO-2-N as well as the impacts of the temperature and the initial pH value on the final saturation, the average rate of gas production, the initial stagnation period are analyzed. The optimum nitrogen source, the suitable ranges of the temperature and the initial pH value are determined. The experimental results show that Na-citrate is the optimum nitrogen source. The reduction rate of NO-3-N can reach 100% at 21 h. NO-2-N accumulates first before reduction with 0.82 mmol/L residual. The bacteria has the ability to generate gas when temperature is from 4 to 30 ℃. With the increase of the temperature, the average rate of gas production increases significantly and the final saturation of the sand simple decreases a little. When the temperature is 20 ℃ and the initial pH value is 5 to 9, the bacteria can smoothly generate gas in the sand simple. In the neutral and alkaline environments, the final saturations of the sand simple are basically consistent. In the acidic environment, the final saturation of the sand simple decreases with the decrease of the initial pH value. The average rate of gas production of the bacteria in the sand simple decreases with the decrease of the initial pH value. Compared with the existing biogas methods, the application of this bacteria in induced partial saturation(IPS)has advantages such as the fast average rate of gas production, short initial stagnation period, simple technology and so on.

参考文献/References:

[1] Xia H, Hu T. Effects of saturation and back pressure on sand liquefaction[J]. Journal of Geotechnical Engineering, 1991, 117(9): 1347-1362. DOI:10.1061/(asce)0733-9410(1991)117:9(1347).
[2] Martin G R, Finn W D L, Seed H B. Effects of system compliance on liquefaction tests [J]. Journal of the Geotechnical Engineering Division, 1978, 104(4): 463-479.
[3] Yoshimi Y, Tanaka K, Tokimatsu K. Liquefaction resistance of a partially saturated sand[J]. Soils and Foundations, 1989, 29(3): 157-162. DOI:10.3208/sandf1972.29.3_157.
[4]] Yegian M K, Eseller-bayat E. Induced-partial saturation for liquefaction mitigation: Experimental investigation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(4): 372-380. DOI:10.1061/(asce)1090-0241(2007)133:4(372).
[5]] 章定文,彭尔兴,孙文博,等.一种微纳米气泡处理可液化地基装置及操作方法:中国,201410226587.8[P].2014-08-20.
[6] He J, Chu J, Ivanov V. Mitigation of liquefaction of saturated sand using biogas[J]. Géotechnique, 2013, 63(4): 267-275. DOI:10.1680/geot.sip13.p.004.
[7] He J. Mitigation of liquefaction of sand using microbial methods[D]. Singapore: Nanyang Technological University, 2013.
[8] He J, Chu J. Undrained responses of microbially desaturated sand under monotonic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5): 04014003. DOI:10.1061/(asce)gt.1943-5606.0001082.
[9] Li Y. Mitigation of sand liquefaction using in situ production of biogas with biosealing[D]. Ames, Iowa, USA: Iowa State University, 2014.
[10] 中华人民共和国水利部.GB/T50145—2007土的工程分类标准[S].北京:中国计划出版社,2007.
[11] 杨洒,李小明,曾光明,等.同步硝化反硝化机理的研究进展[J].微生物学通报,2003,30(4):88-91.
  Yang Sa, Li Xiaoming, Zeng Guangming, et al. Study progress on mechanism for simultaneous nitrification and denitrification[J]. Microbiology China, 2003, 30(4): 88-91.(in Chinese)
[12] Henderson S L, Dandie C E, Goyer C, et al. Glucose effects on denitrifier abundance, denitrification gene mRNA levels, and denitrification activity in an anoxic soil microcosm[C]//Proceedings of the 19th World Congress of Soil Science. Brisbane, Australia, 2010: 18-21.
[13] 马娟,彭永臻,王丽,等.温度对反硝化过程的影响以及pH值变化规律[J].中国环境科学,2008,28(11):1004-1008. DOI:10.3321/j.issn:1000-6923.2008.11.009.
  Ma Juan, Peng Yongzhen, Wang Li, et al. Effect of temperature on denitrification and profiles of pH during the process[J]. China Environmental Science, 2008, 28(11): 1004-1008. DOI:10.3321/j.issn:1000-6923.2008.11.009.(in Chinese)
[14] 吴吉春,张景飞.水环境化学[M].北京:中国水利水电出版社,2009:83-85.
[15] Glass C, Silverstein J A. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation[J]. Water Research, 1998, 32(3): 831-839. DOI:10.1016/s0043-1354(97)00260-1.

备注/Memo

备注/Memo:
收稿日期: 2016-07-11.
作者简介: 彭尔兴(1986—),男,博士生;章定文(联系人),博士,教授,博士生导师,zhangdw@seu.edu.cn
基金项目: 水利部土石坝破坏机理与防控技术重点实验室开放研究基金资助项目(YK914021)、中央高校基本科研业务费专项资金资助项目(2242014R30020)、江苏高校“青蓝工程”优秀青年骨干教师培养对象资助项目、江苏省创新计划资助项目(KYLX15_0158).
引用本文: 彭尔兴,章定文,周利,等.施氏假单胞菌应用于IPS技术的可行性试验研究[J].东南大学学报(自然科学版),2017,47(1):170-176. DOI:10.3969/j.issn.1001-0505.2017.01.029.
更新日期/Last Update: 2017-01-20