[1]闵鹤群,郭文成.具有并联不等深度子背腔序列的微穿孔板吸声体吸声特性[J].东南大学学报(自然科学版),2017,47(1):177-183.[doi:10.3969/j.issn.1001-0505.2017.01.030]
 Min Hequn,Guo Wencheng.Absorption characteristics of micro-perforated panel sound absorbers with array of parallel-arranged sub-cavities with different depths[J].Journal of Southeast University (Natural Science Edition),2017,47(1):177-183.[doi:10.3969/j.issn.1001-0505.2017.01.030]
点击复制

具有并联不等深度子背腔序列的微穿孔板吸声体吸声特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第1期
页码:
177-183
栏目:
建筑学
出版日期:
2017-01-18

文章信息/Info

Title:
Absorption characteristics of micro-perforated panel sound absorbers with array of parallel-arranged sub-cavities with different depths
作者:
闵鹤群郭文成
东南大学建筑学院, 南京210096; 东南大学城市与建筑遗产保护教育部重点实验室, 南京210096
Author(s):
Min Hequn Guo Wencheng
School of Architecture, Southeast University, Nanjing 210096, China
Key Laboratory of Urban and Architectural Heritage Conservation of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
微穿孔板 吸声体 二次余数扩散体 有限元法 实验
Keywords:
micro-perforated panel sound absorber quadratic residue diffuser finite element method experiment
分类号:
TU112;TU55
DOI:
10.3969/j.issn.1001-0505.2017.01.030
摘要:
详细讨论了一种新型宽频带微穿孔板(MPP)吸声体的吸声特性,该吸声体由单层MPP和基于二次余数扩散体(QRD)深度序列设计的多个并联且深度不等的子背腔组成.首先,从理论上提出了该吸声体正入射吸声系数的解析计算方法;然后,建立了有限元数值仿真模型验证所提出的解析计算方法,并分析该吸声体的正入射吸声特性;最后,在矩形驻波管内基于传递函数法实验测量了该吸声体样品的正入射吸声系数.实验结果表明,所提出的该类吸声体正入射吸声系数的解析计算方法准确可靠.同时,在460~3 500 Hz的频率范围内,采用解析计算方法预测的该类MPP吸声体的正入射吸声系数不小于0.5,最大吸声系数能达到0.98.
Abstract:
A new prototype of micro-perforated panel(MPP)sound absorber with supposed high sound absorption property in a wide frequency band is discussed. This kind of sound absorber included a single layered MPP and several cavities with different depths based on the depth sequence designed of the quadratic residue diffuser(QRD). First, an analytical method for evaluating the normal incidence absorption coefficients of this kind of absorber is presented. Secondly, the analytical method is validated by the simulations with the finite element method and the normal incidence absorption characteristics of the absorber are investigated as well. Finally, the corresponding experimental study is carried out, in which the normal incidence absorption coefficient of a prototype absorber is measured in a rectangular standing wave tube by the transfer function method. The experimental results show that the proposed analytical method is accurate and reliable. Besides, the normal incidence sound absorption coefficient of this kind of MPP absorber predicted by the analytical method is not smaller than 0.5 over the frequencies from 440 to 3 500 Hz, and the maximum sound absorption coefficients is 0.98.

参考文献/References:

[1] 马大猷. 微穿孔板吸声体结构的理论和设计[J]. 中国科学, 1975,18(1):38-50.
  Maa Dahyou. Theory and design of microperforated panel sound absorbing constructions [J]. Scientia Sinica, 1975, 18(1):38-50.(in Chinese)
[2] 马大猷. 微穿孔板结构的设计[J]. 声学学报,1988, 13(3):175-180.
  Maa Dahyou. Design of microperforated panel constructions[J]. Acta Acustica, 1988, 13(3):175-180.(in Chinese)
[3] Park S H. Acoustic properties of micro-perforated panel absorbers backed by Helmholtz resonators for the improvement of low-frequency sound absorption[J]. Journal of Sound and Vibration, 2013, 332(20): 4895-4911. DOI:10.1016/j.jsv.2013.04.029.
[4] Zhao X D, Fan X Q. Enhancing low frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plates[J]. Applied Acoustics, 2015, 88:123-128. DOI:10.1016/j.apacoust.2014.08.015.
[5] Qian Y J, Kong D Y, Liu Y, et al. Improvement of sound absorption characteristics under low frequency for micro-perforated panel absorbers using super-aligned carbon nanotube arrays[J]. Applied Acoustics, 2014, 82:23-27. DOI:10.1016/j.apacoust.2014.02.014.
[6] 盛胜我, 宋拥民, 王季卿. 微穿孔平板式空间吸声体的理论分析[J]. 声学学报, 2004, 29(4): 303-307.
  Sheng Shengwo, Song Yongmin, Wang Jiqing. Theoretical analysis of the acoustical characteristics of suspended micro-perforated panel[J]. Acta Acustica, 2004, 29(4):303-307.(in Chinese)
[7] 蔺磊, 王佐民, 姜在秀. 微穿孔共振吸声结构中吸声材料的作用[J]. 声学学报, 2010, 35(4): 385-392.
  Lin Lei, Wang Zuomin, Jiang Zaixu. Effect of sound-absorbing material on a microperforated absorbing construction[J]. Acta Acustica, 2010,35(4):385-392.(in Chinese)
[8] Wang C Q, Huang L X. On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths[J]. Journal of the Acoustical Society of America, 2011, 130(1): 208-218. DOI:10.1121/1.3596459.
[9] Fujiwara K, Miyajima T. Absorption characteristics of a practically constructed Schroeder diffuser of quadratic-residue type[J]. Applied Acoustics, 1992, 35(2): 149-152. DOI:10.1016/0003-682x(92)90029-r.
[10] Fujiwara K, Miyajima T. A study on the sound absorption of a quadratic-residue type diffuser[J]. Acustica, 1995, 81(4): 370-378.
[11] Kuttruff H. Sound absorption by pseudostochastic diffusers(Schroeder diffusers)[J]. Applied Acoustics, 1994, 42(3): 215-231. DOI:10.1016/0003-682x(94)90110-4.
[12] Mechel F P. The wide-angle diffuser—A wide-angle absorber?[J]. Acustica, 1995, 81(4):379-401.
[13] Wu T, Cox T J, Lam Y W. From a profiled diffuser to an optimized absorber[J]. Journal of the Acoustical Society of America, 2000, 108(2): 643-650. DOI:10.1121/1.429596.
[14] Schroeder M R. Binaural dissimilarity and optimum ceilings for concert halls: More lateral sound diffusion[J]. The Journal of the Acoustical Society of America, 1979, 65(4): 958. DOI:10.1121/1.382601.
[15] Morse P M, Ingard K. Theoretical acoustics[M]. New York: McGraw-Hill, 1968: 285-522.
[16] Maa D Y. Potential of microperforated panel absorber[J]. The Journal of the Acoustical Society of America, 1998, 104(5): 2861-2866. DOI:10.1121/1.423870.
[17] 中华人民共和国国家质量监督检验检疫总局. GB/T 18696.2—2002声学 阻抗管中吸声系数和声阻抗的测量 第2部分:传递函数法[S]. 北京:中国标准出版社, 2002.

备注/Memo

备注/Memo:
收稿日期: 2016-07-06.
作者简介: 闵鹤群(1981—),男,博士,副教授, hqmin@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51408113)、江苏省科技计划青年基金资助项目(BK20140623).
引用本文: 闵鹤群,郭文成.具有并联不等深度子背腔序列的微穿孔板吸声体吸声特性[J].东南大学学报(自然科学版),2017,47(1):177-183. DOI:10.3969/j.issn.1001-0505.2017.01.030.
更新日期/Last Update: 2017-01-20