[1]龚凯,向俊,余翠英.重载铁路轨道刚度对货物列车抗脱轨安全度的影响[J].东南大学学报(自然科学版),2017,47(1):184-192.[doi:10.3969/j.issn.1001-0505.2017.01.031]
 Gong Kai,Xiang Jun,Yu Cuiying.Effects of track stiffness on freight train anti-derailment safety degree in heavy-haul railway[J].Journal of Southeast University (Natural Science Edition),2017,47(1):184-192.[doi:10.3969/j.issn.1001-0505.2017.01.031]
点击复制

重载铁路轨道刚度对货物列车抗脱轨安全度的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第1期
页码:
184-192
栏目:
交通运输工程
出版日期:
2017-01-18

文章信息/Info

Title:
Effects of track stiffness on freight train anti-derailment safety degree in heavy-haul railway
作者:
龚凯12向俊1余翠英13
1中南大学土木工程学院, 长沙 410075; 2华东交通大学土木建筑学院, 南昌 330013; 3南昌理工学院建筑工程学院, 南昌 330044
Author(s):
Gong Kai12 Xiang Jun1 Yu Cuiying13
1School of Civil Engineering, Central South University, Changsha 410075, China
2School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
3School of Architectural Engineering, Nanchang Institute of Technology, Nanchang 330044, China
关键词:
铁道工程 重载铁路 轨道刚度 FTT系统横向振动稳定性 货物列车
Keywords:
railway track engineering heavy-haul railway track stiffness lateral vibration stability on freight train-track system freight train
分类号:
U213.2
DOI:
10.3969/j.issn.1001-0505.2017.01.031
摘要:
为确定具有预防货物列车脱轨功能的轨道刚度合理值,基于列车轨道系统空间振动计算模型及列车脱轨能量随机分析方法,提出了货物列车-轨道(FTT)系统横向振动稳定性分析方法,分析多组扣件及道床横向刚度组合下FTT系统抗脱轨能力、FTT系统横向振动稳定性及其振动响应的影响.结果表明:FTT系统抗脱轨能力、临界车速及容许极限车速随着扣件及道床横向刚度的增大均有大幅度提高,但当扣件和道床横向刚度分别增大至90和10 MN/m时,其提高幅度逐渐减小,且当扣件和道床横向刚度分别由120 MN/m增至150 MN/m、15 MN/m增至20 MN/m时FTT系统抗脱轨能力、临界车速及容许极限车速仅提高了3.9%,1.8%和1.8%;另外,增大扣件和道床横向刚度有助于减小轨道横向位移.考虑日趋紧张的重载铁路市场竞争,建议扣件横向刚度取90~120 MN/m, 道床横向刚度取10~15 MN/m.
Abstract:
For the determination of the reasonable range of track stiffness to prevent the freight train derailment, the analysis method for the lateral vibration stability of freight train-track(FTT)system was proposed based on the train-track spatial vibration calculation model and the random energy analysis method for the train derailment. The anti-derailment capacity, the lateral vibration stability and the corresponding vibration response in FTT system on the multiple combination of the fastener and ballast bed lateral stiffnesses were analyzed. Results show that the anti-derailment capacity, critical speed and allowable limit speeds of the FTT system are significantly increased with the increase of the fastener and ballast bed lateral stiffnesses; while the fastener and ballast bed lateral stiffnesses, respectively, increase to 90 MN/m and 10 MN/m, the increased amplitudes decrease. Meanwhile, when the fastener and ballast bed lateral stiffnesses, respectively, increase from 120 MN/m to 150 MN/m, and from 15 MN/m to 20 MN/m, the anti-derailment capacity, critical and allowable limit speeds of the FTT system are increased by only 3.9% 1.8% and 1.8%, respectively. Moreover, increasing the lateral stiffnesses of the fastener and the ballast bed contributes to reducing the lateral displacement of the track structure. In conclusion, considering the rigorous market competition of heavy-haul railway, it is suggested that the fasteners lateral stiffness and the ballast bed lateral stiffness should be from 90 MN/m to 120 MN/m and from 10 MN/m to 15 MN/m, respectively.

参考文献/References:

[1] 曾庆元,向俊,周志辉,等. 列车脱轨分析理论与应用[M]. 长沙:中南大学出版社,2006: 204-276.
[2] Xiang Jun, Li Dejian, Zeng Qingyuan. Simulation of spatially coupling dynamic response of train track time variant system [J]. Journal of Central South University of Technology, 2003, 10(3): 226-230. DOI:10.1007/s11771-003-0014-x.
[3] Zeng Qingyuan, Lou Ping, Xiang Jun. The principle of total potential energy with stationary value in elastic system dynamics and its application to the analysis of vibration and dynamic stability[J]. Journal of Huangzhong University of Science & Technology(Urban Science Edition), 2002, 19(1): 7-14.
[4] Lopez-Pita A. The vertical stiffness of the track and the deterioration of high speed lines[J]. Revista de Obras Publicas, 2001, 148(3415): 7-26.
[5] Real J I, Gomez L, Montalban L. Study of the influence of geometrical and mechanical parameters on ballasted railway tracks design[J]. Journal of Mechanical Science and Technology, 2012, 26(9): 2837-2844. DOI:10.1007/s12206-012-0734-7.
[6] Dahlberg T. Railway track stiffness variations—consequences and countermeasures[J]. International Journal of Civil Engineering, 2010, 8(1): 1-12.
[7] Giannakos K. Track maintenance of heavy haul railways with resilient versus stiff fastenings[J]. Transportation Research Record: Journal of the Transportation Research Board, 2011, 2261: 155-162. DOI:10.3141/2261-18.
[8] Frohling R D, Scheffel H, Ebersohn W. The vertical dynamic response of a rail vehicle caused by track stiffness variations along the track[J]. Vehicle System Dynamics, 1996, 25(1): 175-187.DOI:10.1080/00423119608969194.
[9] Wu T X, Thompson D J. The effects of local preload on the foundation stiffness and vertical vibration of railway track[J]. Journal of Sound and Vibration, 1999, 219(5): 881-904. DOI:10.1006/jsvi.1998.1939.
[10] 翟婉明,蔡成标,王开云. 轨道刚度对列车走行性能的影响[J]. 铁道学报,2000, 22(6): 80-83. DOI:10.3321/j.issn:1001-8360.2000.06.018.
  Zhai Wanming, Cai Chengbiao, Wang Kaiyun. Effect of track stiffness on train running behavior[J]. Journal of the China Railway Society, 2000, 22(6): 80-83. DOI:10.3321/j.issn:1001-8360.2000.06.018.(in Chinese)
[11] 王开云,翟婉明,蔡成标. 轮轨结构参数对列车运动稳定性的影响[J]. 中国铁道科学, 2003, 24(1): 43-48. DOI:10.3321/j.issn:1001-4632.2003.01.009..
  Wang Kaiyun, Zhai Wanming, Cai Chengbiao. Effect of wheel rail structure parameter on stability of train movement[J]. China Railway Science, 2003, 24(1): 43-48. DOI:10.3321/j.issn:1001-4632.2003.01.009.(in Chinese)
[12] 刘学毅. 轨道刚度的影响分析及动力学优化[J]. 西南交通大学学报,2004, 39(1): 1-5. DOI:10.3969/j.issn.0258-2724.2004.01.001.
  Liu Xueyi. Effect analysis of track stiffness on dynamic characteristics of wheel-rail system and its dynamic optimization[J]. Journal of Southwest Jiaotong University, 2004, 39(1): 1-5. DOI:10.3969/j.issn.0258-2724.2004.01.001.(in Chinese)
[13] 练松良. 轨道结构刚度的理论计算[J]. 中国铁道科学,2004, 25(1):67-71. DOI:10.3321/j.issn:1001-4632.2004.01.012.
  Lian Songliang. Theoretical calculation of the track structure stiffness[J]. China Railway Science, 2004, 25(1):67-71. DOI:10.3321/j.issn:1001-4632.2004.01.012.(in Chinese)
[14] 向俊,曾庆元. 车辆轨道参数对列车轨道系统振动响应的影响分析[J]. 铁道车辆,2001,39(12):6-8,20. DOI:10.3969/j.issn.1002-7602.2001.12.002.
  Xiang Jun, Zeng Qingyuan. Analysis on the effect of car, rail parameters on the vibration response of the train-rail system[J]. Rolling Stock, 2001,39(12):6-8,20. DOI:10.3969/j.issn.1002-7602.2001.12.002.(in Chinese)
[15] 向俊,赫丹.板式轨道在高速列车作用下的动力响应分析[J]. 工程力学,2008,25(12): 235-240.
  Xiang Jun, He Dan. Dynamic analysis of slab track under high speed train[J]. Engineering Mechanics, 2008,25(12): 235-240.(in Chinese)
[16] 张斌,雷晓燕.基于车辆轨道单元的无砟轨道动力特性有限元分析[J]. 铁道学报,2011, 33(7): 78-85. DOI:10.3969/j.issn.1001-8360.2011.07.013.
  Zhang Bin, Lei Xiaoyan. Analysis on dynamic behavior of ballastless track based on vehicle and track elements with finite element method[J]. Journal of the China Railway Society, 2011, 33(7): 78-85. DOI:10.3969/j.issn.1001-8360.2011.07.013.(in Chinese)
[17] 王平,徐金辉,汪力,等. 轨道刚度对车辆轨道系统频率响应的影响[J].铁道工程学报,2014, 31(9):46-52. DOI:10.3969/j.issn.1006-2106.2014.09.010.
  Wang Ping, Xu Jinhui, Wang Li, et al. Effect of track stiffness on frequency response of vehicle-track coupling system[J]. Journal of Railway Engineering Society, 2014, 31(9):46-52. DOI:10.3969/j.issn.1006-2106.2014.09.010.(in Chinese)
[18] 张格明. 轨道刚度合理值评价指标的研究[J]. 中国铁道科学,2002, 23(1): 51-57. DOI:10.3321/j.issn:1001-4632.2002.01.009.
  Zhang Geming. Research on right level of track structure stiffness and track-part stiffness[J]. China Railway Science, 2002, 23(1): 51-57. DOI:10.3321/j.issn:1001-4632.2002.01.009.(in Chinese)
[19] 赵国堂. 铁路轨道刚度的确定方法[J]. 中国铁道科学,2005, 26(1): 1-6. DOI:10.3321/j.issn:1001-4632.2005.01.001.
  Zhao Guotang. Method for determining the rigidity of railway track[J]. China Railway Science, 2005, 26(1): 1-6. DOI:10.3321/j.issn:1001-4632.2005.01.001.(in Chinese)
[20] 向俊,曾庆元. 列车轨道(桥梁)时变系统横向振动稳定性与失稳临界车速分析方法[J]. 交通运输工程学报,2011,11(1):19-24.
  Xiang Jun, Zeng Qingyuan. Analysis method of stability and critical speed for train-track(bridge)time-variable system under lateral vibration condition[J]. Journal of Traffic and Transportation Engineering, 2011,11(1):19-24.(in Chinese)
[21] 曾庆元,郭向荣. 列车桥梁时变系统振动分析理论与应用[M]. 北京:中国铁道出版社,1999: 21-29.

相似文献/References:

[1]龚凯,向俊,毛建红,等.地震引起的货物列车脱轨全过程计算[J].东南大学学报(自然科学版),2016,46(3):664.[doi:10.3969/j.issn.1001-0505.2016.03.035]
 Gong Kai,Xiang Jun,Mao Jianhong,et al.Calculation of freight train derailment course induced by earthquake[J].Journal of Southeast University (Natural Science Edition),2016,46(1):664.[doi:10.3969/j.issn.1001-0505.2016.03.035]

备注/Memo

备注/Memo:
收稿日期: 2016-06-14.
作者简介: 龚凯(1986—),男,博士,讲师;向俊(联系人),男,博士,教授,博士生导师,jxiang@csu.edu.cn.
基金项目: 国家自然科学基金委员会与神华集团有限公司联合资助项目(U1261113)、高等学校博士学科点专项科研基金资助项目(20100162110022)、牵引动力国家重点实验室开放课题资助项目(TPL0901,TPL1214)、华东交通大学科研启动基金资助项目(2003416034)、江西省教育厅科技资助项目(GJJ151173,GJJ151175).
引用本文: 龚凯,向俊,余翠英.重载铁路轨道刚度对货物列车抗脱轨安全度的影响[J].东南大学学报(自然科学版),2017,47(1):184-192. DOI:10.3969/j.issn.1001-0505.2017.01.031.
更新日期/Last Update: 2017-01-20