[1]张鹏,费庆国,吴邵庆,等.基于模态叠加法的面压载荷与基础激励等效方法[J].东南大学学报(自然科学版),2017,47(2):331-336.[doi:10.3969/j.issn.1001-0505.2017.02.022] 　Zhang Peng,Fei Qingguo,Wu Shaoqing,et al.Equivalence method of pressure load and foundation excitation based on mode superposition technique[J].Journal of Southeast University (Natural Science Edition),2017,47(2):331-336.[doi:10.3969/j.issn.1001-0505.2017.02.022] 点击复制 基于模态叠加法的面压载荷与基础激励等效方法() 分享到： var jiathis_config = { data_track_clickback: true };

47

2017年第2期

331-336

2017-03-20

文章信息/Info

Title:
Equivalence method of pressure load and foundation excitation based on mode superposition technique

Author(s):
School of Civil Engineering, Southeast University, Nanjing 210096, China

Keywords:

TH113
DOI:
10.3969/j.issn.1001-0505.2017.02.022

Abstract:
The random pressure load is equivalent to the random foundation excitation based on the modal superposition method to provide evidence for the replacement of the expensive acoustic tests with the shaking table tests for thin-walled structures. The displacement of the leading modes under the two loads are required to be identical. The statically indeterminate problem of the single source load equivalence is properly simplified to a determinate problem. A carbon/carbon(C/C)composite cantilever plate is used as a research subject to investigate the validity of the load equivalence method. The results show that the power spectral density of the random stress responses at typical points of the plate under the random pressure load agrees well with that under the equivalent random foundation excitation. In the analysis of frequency band, the error of the root-mean-square(RMS)of the x-axial normal stress response at the high-risk point on the plate is less than 1%, and the errors of the RMSs of the x-axial normal stress responses at five points distributed on the plate are less than 2%. By using the proposed method, the random pressure load can be effectively equivalent to the foundation excitation, ensuring the consistency of the random stress responses on the thin-walled structures in both the frequency domain and the spacial domain when the structures are subjected to the two loads.

参考文献/References:

[1] 孟光, 周徐斌, 苗军. 航天重大工程中的力学问题[J]. 力学进展, 2016, 46(1): 267-322. DOI:10.6052/1000-0992-15-018.
Meng Guang, Zhou Xubin, Miao Jun. Mechanical problems in momentous projects of aerospace engineering[J]. Advances In Mechanics, 2016, 46(1): 267-322. DOI:10.6052/1000-0992-15-018. (in Chinese)
[2] Ciappi E, de Rosa S, Franco F, et al. On the dynamic behavior of composite panels under turbulent boundary layer excitations [J]. Journal of Sound and Vibration, 2016, 364: 77-109. DOI:10.1016/j.jsv.2015.11.024.
[3] 李彦斌, 张鹏, 吴邵庆, 等. 复合材料加筋板计及热效应的声-固耦合分析[J]. 振动工程学报, 2015, 28(4): 531-540. DOI:10.16385/j.cnki.issn.1004-4523.2015.04.005.
Li Yanbin, Zhang Peng, Wu Shaoqing, et al. Structural-acoustic coupling analysis of a composite stiffened panel in a thermal environment[J]. Journal of Vibration Engineering, 2015, 28(4): 531-540. DOI:10.16385/j.cnki.issn.1004-4523.2015.04.005. (in Chinese)
[4] Liu L, Guo Q, He T. Thermal-acoustic fatigue of a multilayer thermal protection system in combined extreme environments [J]. Advances in Mechanical Engineering, 2014, 6: 176891. DOI:10.1155/2014/176891.
[5] Leung K, Foist B L. Prediction of acoustically induced random vibration loads for shuttle payloads [C]//Proceedings of 36th Structures, Structural Dynamics, and Materials Conference and Exhibit. Washington DC, USA,1995: 1200-1208. DOI:10.2514/6.1995-1200.
[6] Lee H M. Testing for random limit load versus static limit load [R]. Huntsville, Alabama,USA: NASA, 1997.
[7] 冯若强, 丁静鹄, 李庆祥, 等. 肋环型单层曲板网壳结构的风振响应及等效静风荷载[J]. 东南大学学报(自然科学版), 2012, 42(2): 328-333. DOI:10.3969/j.issn.1001-0505.2012.02.026.
Feng Ruoqiang, Ding Jinghu, Li Qingxiang, et al. Wind-induced response and equivalent static wind load of single-layer geiger lattice shell with curved plate[J]. Journal of Southeast University(Natural Science Edition), 2012, 42(2): 328-333. DOI:10.3969/j.issn.1001-0505.2012.02.026. (in Chinese)
[8] 柯世堂, 王浩. 考虑地形效应的大型电视塔等效静风荷载分析[J]. 东南大学学报(自然科学版), 2016, 46(3): 545-551.
Ke Shitang, Wang Hao. Analysis on equivalent static wind loads of large television tower considering topographic effect [J]. Journal of Southeast University(Natural Science Edition), 2016, 46(3): 545-551.(in Chinese)
[9] Ke S T, Ge Y J, Zhao L, et al. A new methodology for analysis of equivalent static wind loads on super-large cooling towers [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 111: 30-39. DOI:10.1016/j.jweia.2012.08.001.
[10] 张艳岗, 毛虎平, 苏铁熊, 等. 基于关键时间点的能量等效静态载荷法及结构动态响应优化[J]. 机械工程学报, 2016, 52(9): 151-157. DOI:10.3901/JME.2016.09.151.
Zhang Yangang, Mao Huping, Su Tiexiong, et al. Energy equivalent static load method based on critical time point and structure dynamic response optimization[J]. Journal of Mechanical Engineering, 2016, 52(9): 151-157. DOI:10.3901/JME.2016.09.151. (in Chinese)
[11] Rajaneesh A, Satrio W, Chai G B, et al. Long-term life prediction of woven CFRP laminates under three point flexural fatigue[J]. Composites Part B: Engineering, 2016, 91: 539-547. DOI:10.1016/j.compositesb.2016.01.028.