参考文献/References:
[1] Thandavan T M K, Gani S M A, Wong S C, et al. Enhanced photoluminescence and raman properties of Al-doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass[J]. Plos One, 2015, 10(3): e0121756-1-e0121756-18. e0121756. DOI:10.1371/journal.pone.
0121756.
[2] Abdolmaleki A, Mallakpour S, Borandeh S. Effect of silane-modified ZnO on morphology and properties of bionanocomposites based on poly(ester-amide)containing tyrosine linkages[J]. Polymer Bulletin, 2012, 69(1): 15-28. DOI:10.1007/s00289-011-0685-7.
[3] Gottschalk F, Sonderer T, Scholz R W, et al. Modeled environmental concentrations of engineered nanomaterials(TiO2, ZnO, Ag, CNT, fullerenes)for different regions[J]. Environmental Science & Technology, 2009, 43(24): 9216-9222. DOI:10.1021/es9015553.
[4] Maurer-Jones M A, Gunsolus I L, Murphy C J, et al. Toxicity of engineered nanoparticles in the environment[J]. Analytical Chemistry, 2013, 85(6): 3036-3049. DOI:10.1021/ac303636s.
[5] Ma X, Geiser-Lee J, Deng Y, et al. Interactions between engineered nanoparticles(ENPs)and plants: Phytotoxicity, uptake and accumulation[J]. Science of the Total Environment, 2010, 408(16): 3053-3061. DOI:10.1016/j.scitotenv.2010.03.031.
[6] Watson J, Fang T, Dimkpa C O, et al. The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties[J]. Biometals, 2015, 28(1): 101-112. DOI:10.1007/s10534-014-9806-8.
[7] Yang F, Hong F S, You W J, et al. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach[J]. Biological Trace Element Research, 2006, 110(2): 179-190. DOI:10.1385/bter:110:2:179.
[8] 罗珊,康玉凡,夏祖灵. 种子萌发及幼苗生长的调节效应研究进展[J]. 中国农学通报, 2009, 25(2): 28-32.
Luo Shan, Kang Yufan, Xia Zhuling. Study advances of regulating effect for seed germination and sprout growing[J]. Chinese Agricultural Science Bulletin, 2009, 25(2): 28-32.(in Chinese)
[9] Mahajan P, Dhoke S K, Khanna A S. Effect of nano-ZnO particle suspension on growth of mung(Vigna radiata)and gram(Cicer arietinum)seedlings using plant agar method[J]. Journal of Nanotechnology,2011, 2011: 696535-1-696535-7. DOI:10.1155/2011/696535.
[10] Lee C W, Mahendra S, Zodrow K, et al. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana.[J]. Environmental Toxicology and Chemistry, 2010, 29(3): 669-675. DOI:10.1002/etc.58.
[11] Ghodake G, Seo Y D, Lee D S. Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa[J]. Journal of Hazardous Materials, 2011, 186(1): 952-955. DOI:10.1016/j.jhazmat.2010.11.018.
[12] Lin D, Xing B. Root uptake and phytotoxicity of ZnO nanoparticles[J]. Environmental Science & Technology, 2008, 42(15): 5580-5585. DOI:10.1021/es800422x.
[13] Yin L, Cheng Y, Espinasse B, et al. More than the ions: The effects of silver nanoparticles on Lolium multiflorum[J]. Environmental Science & Technology, 2011, 45(6): 2360-2367. DOI:10.1021/es103995x.
[14] 国际种子检验协会(ISTA). 1996国际种子检验规程[M]. 北京: 中国农业出版社,1999.
[15] Ma Y, Kuang L, He X, et al. Effects of rare earth oxide nanoparticles on root elongation of plants[J]. Chemosphere, 2010, 78(3): 273-279. DOI:10.1016/j.chemosphere.2009.10.050.
[16] Liu Q, Zhao Y, Wan Y, et al. Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level[J]. ACS Nano, 2010, 4(10): 5743-5748. DOI:10.1021/nn101430g.