[1]孔令军,姜明,赵春明.低存储可线性编码的QC-LDPC码设计[J].东南大学学报(自然科学版),2017,47(3):421-425.[doi:10.3969/j.issn.1001-0505.2017.03.001]
 Kong Lingjun,Jiang Ming,et al.QC-LDPC code design with low hardware storage and linear encoding[J].Journal of Southeast University (Natural Science Edition),2017,47(3):421-425.[doi:10.3969/j.issn.1001-0505.2017.03.001]
点击复制

低存储可线性编码的QC-LDPC码设计()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第3期
页码:
421-425
栏目:
信息与通信工程
出版日期:
2017-05-20

文章信息/Info

Title:
QC-LDPC code design with low hardware storage and linear encoding
作者:
孔令军12姜明1赵春明1
1东南大学移动通信国家重点实验室, 南京 210096; 2南京邮电大学通信与信息工程学院, 南京 210003
Author(s):
Kong Lingjun1 2 Jiang Ming1 Zhao Chunming1
1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
2College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
关键词:
QC-LDPC码 准循环码 停止集 停止距离 围长
Keywords:
low-density parity-check(QC-LDPC)code quasi-cyclic(QC)code stopping set stopping distance girth
分类号:
TN911.22
DOI:
10.3969/j.issn.1001-0505.2017.03.001
摘要:
为了解决构造任意长度、无小停止集且无短环QC-LDPC码的设计问题,研究了基于Tanner图的停止集、围长和最小码重三者之间的关系,提出了QC-LDPC码无短停止距离且无短环的充要条件.在此基础上,为了进一步降低编码复杂度并保留结构化特性,提出了一种具有线性编码复杂度的基于后向迭代的QC-LDPC码.仿真结果表明:所构造的QC-LDPC码的纠错性能与IEEE 802.11n中QC-LDPC码相近,与IEEE 802.16e中QC-LDPC码相比,在误码率为10-6时,可获得0.15 dB的性能增益;此外,该码字只需存储移位因子和单位子矩阵的阶数,所占硬件存储空间明显小于另外2种QC-LDPC码.
Abstract:
To solve the design problem of constructing quasi-cyclic low-density parity-check(QC-LDPC)codes of any length without small stopping sets or small girth, the relationship among the stopping set, the girth and the minimum weight based on the Tanner graph is investigated. The necessary and sufficient conditions of the QC-LDPC codes without small stopping sets or small girth are proposed. To further reduce the encoding complexity and maintain the structural characteristics, the backward iteration based QC-LDPC code with linear encoding complexity is proposed. The simulation results show that the error correction performance of the constructed QC-LDPC code is similar to that of the QC-LDPC code in IEEE 802.11n. And the designed code achieves a performance gain of 0.15 dB at the bit error rate of 10-6 compared with the QC-LDPC code in IEEE 802.16e. Meanwhile, the proposed code only needs to store the shift factor and the order of the unit sub-matrix, inducing that the hardware storage resource is obviously smaller than those of the other two QC-LDPC codes.

参考文献/References:

[1] Gallager R. Low-density parity-check codes[J]. IEEE Transactions on Information Theory, 1962, 8(1): 21-28. DOI:10.1109/tit.1962.1057683.
[2] Richardson T J. LDPC design for high parallelism, low error floor, and simple encoding:US, US9306601[P]. 2016-04-05.
[3] Ganesan K, Grover P, Rabaey J, et al. On the total power capacity of regular-LDPC codes with iterative message-passing decoders[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(2): 375-396. DOI:10.1109/jsac.2015.2504276.
[4] Song L, Huang Q, Wang Z, et al. Two enhanced reliability-based decoding algorithms for nonbinary LDPC codes[J]. IEEE Transactions on Communications, 2016, 64(2): 479-489. DOI:10.1109/tcomm.2015.2512582.
[5] Tasdighi A, Banihashemi A H, Sadeghi M R. Efficient search of girth-optimal QC-LDPC codes[J]. IEEE Transactions on Information Theory, 2016, 62(4): 1552-1564. DOI:10.1109/tit.2016.2523979.
[6] Tanner R M, Sridhara D, Sridharan A, et al. LDPC block and convolutional codes based on circulant matrices[J]. IEEE Transactions on Information Theory, 2004, 50(12): 2966-2984. DOI:10.1109/tit.2004.838370.
[7] 林炳, 姜明, 赵春明. 基于二维优化的QC-LDPC码构造方法[J]. 东南大学学报(自然科学版), 2010, 40(1): 6-10. DOI:10.3969/j.issn.1001-0505.2010.01.002.
Lin Bing, Jiang Ming, Zhao Chunming. Construction of QC-LDPC codes based on two-dimentional optimization[J]. Journal of Southeast University(Natural Science Edition), 2010, 40(1): 6-10. DOI:10.3969/j.issn.1001-0505.2010.01.002. (in Chinese)
[8] Di C A, Proietti D, Telatar I E, et al. Finite-length analysis of low-density parity-check codes on the binary erasure channel[J]. IEEE Transactions on Information Theory, 2002(6): 1570-1579. DOI:10.1109/tit.2002.1003839.
[9] Tian T, Jones C, Villasenor J D, et al. Construction of irregular LDPC codes with low error floors[C]//Proceedings of 2003 IEEE International Conference on Communications. Anchorage, Alaska, USA, 2003: 3125-3129.
[10] 马克祥. LDPC码快速及低错误平层译码算法研究[D]. 西安: 西安电子科技大学通信工程学院, 2014.

备注/Memo

备注/Memo:
收稿日期: 2016-11-10.
作者简介: 孔令军(1982—),男,博士,副教授,ljkong@njupt.edu.cn.
基金项目: 中国博士后科学基金资助项目(2015M581698)、国家自然科学基金青年基金资助项目(61501250)、教育部留学回国人员科研启动基金资助项目(BJ215002)、江苏省博士后科研资助计划资助项目(1501037B)、江苏省自然科学基金青年基金资助项目(SJ214029)、江苏省高校自然科学研究面上项目资助项目(14KJB510021)、南京邮电大学引进人才科研启动基金资助项目(NY214015).
引用本文: 孔令军,姜明,赵春明.低存储可线性编码的QC-LDPC码设计[J].东南大学学报(自然科学版),2017,47(3):421-425. DOI:10.3969/j.issn.1001-0505.2017.03.001.
更新日期/Last Update: 2017-05-20