[1]徐梦圆,邹采荣,梁瑞宇,等.单电极中潜伏期反应的听觉注意特征提取与识别[J].东南大学学报(自然科学版),2017,47(3):432-437.[doi:10.3969/j.issn.1001-0505.2017.03.003]
 Xu Mengyuan,Zou Cairong,Liang Ruiyu,et al.Feature extraction and recognition of auditory attention in middle latency response from single electrode[J].Journal of Southeast University (Natural Science Edition),2017,47(3):432-437.[doi:10.3969/j.issn.1001-0505.2017.03.003]
点击复制

单电极中潜伏期反应的听觉注意特征提取与识别()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第3期
页码:
432-437
栏目:
生物医学工程
出版日期:
2017-05-20

文章信息/Info

Title:
Feature extraction and recognition of auditory attention in middle latency response from single electrode
作者:
徐梦圆1邹采荣12梁瑞宇13王力2王青云3
1东南大学信息科学与工程学院, 南京 210096; 2广州大学机械与电气工程学院, 广州 510006; 3南京工程学院通信工程学院, 南京 211167
Author(s):
Xu Mengyuan1 Zou Cairong12 Liang Ruiyu13 Wang Li2 Wang Qingyun3
1School of Information Science and Engineering, Southeast University, Nanjing 210096, China
2School of Mechanica and Electric Engineering, Guangzhou University, Guangzhou 510006, China
3School of Communication Engineering, Institute of Nanjing Technology, Nanjing 211167, China
关键词:
听觉注意 中潜伏期反应 单电极 人工神经网络
Keywords:
auditory attention middle latency response(MLR) single electrode artificial neural network(ANN)
分类号:
R318
DOI:
10.3969/j.issn.1001-0505.2017.03.003
摘要:
通过提取单电极中潜伏期反应(MLR)的特征差异,研究并实现了正常个体听觉注意与非注意2种状态的识别.首先,对MLR信号进行小波滤波、阈值去伪迹、相干平均等预处理;然后,分析了MLR在2种状态下的成分波差异,并将Na,Pa,Nb波的幅值与能量、面积、C0复杂度、AR模型系数等传统特征组合成为新的特征向量;最后,采用支持向量机(SVM)和人工神经网络(ANN)在传统特征向量和新特征向量下进行目标识别.8位被试的实验结果显示,在2种不同状态下,被试的Na,Pa,Nb波幅值具有显著性差异(p<0.05),而潜伏期并无差异.ANN作为分类器时,新特征向量的平均识别正确率可达85.7%.由此可见,利用单电极中潜伏期反应区分听觉注意与非注意状态是有效的.
Abstract:
The recognition of auditory attention and non-attention states of normal individuals are studied and realized by the extraction of the differences of middle latency response(MLR)of single electrode. First, the MLR signal is preprocessed by wavelet filtering, threshold de-artifact and coherent averaging. Then, the component wave differences of these two states are analyzed. The amplitudes of the Na, Pa, Nb waves and the traditional characteristics such as the energy, the area, the C0 complexity, and the coefficients of the auto regression model(AR)are combined into a new feature vector. Finally, the support vector machine(SVM)and the artificial neural network(ANN)are used to identify the target by using the traditional feature vector and the new one. The experimental results of eight subjects show that the amplitudes of the Na, Pa and Nb waves have significant differences(p<0.05)under the two different states, while no difference exhibits during the latencies. Using the new feature vector, the mean classification accuracy achieves 85.7% with the ANN classifier. Therefore, it is effective to use MLR from single electrode to distinguish between the auditory attention state and the non-attention state.

参考文献/References:

[1] Hill N J, Lal T N, Bierig K, et al. An auditory paradigm for brain-computer interfaces[C]//Proceedings of the 17th International Conference on Neural Information Processing Systems. Cambridge, Massachusetts, USA: MIT Press, 2004: 569-576.
[2] Sellers E W, Kübler A, Donchin E. Brain-computer interface research at the University of South Florida Cognitive Psychophysiology Laboratory: The P300 Speller[J]. IEEE Trans Neural Syst Rehabil Eng, 2006, 14(2): 221-224. DOI:10.1109/TNSRE.2006.875580.
[3] Klobassa D S, Vaughan T M, Brunner P, et al. Toward a high-throughput auditory P300-based brain-computer interface[J]. Clinical Neurophysiology, 2009, 120(7): 1252-1261. DOI:10.1016/j.clinph.2009.04.019.
[4] Furdea A, Halder S, Krusienski D J, et al. An auditory oddball(P300)spelling system for brain-computer interfaces[J]. Psychophysiology, 2009, 46(3): 617-625. DOI:10.1111/j.1469-8986.2008.00783.x.
[5] Schreuder M, Blankertz B, Tangermann M. A new auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue[J]. PloS ONE, 2010, 5(4): e9813. DOI:10.1371/journal.pone.0009813.
[6] Guo J, Gao S, Hong B. An auditory brain-computer interface using active mental response[J]. IEEE Trans Neural Syst Rehabil Eng, 2010, 18(3): 230-235. DOI:10.1109/TNSRE.2010.2047604.
[7] 李兴启,王秋菊.听觉诱发反应及应用 [M].北京:人民军医出版社,2015:208-209.
[8] 彭贤,符秋养,王涛.听觉诱发中潜伏期反应研究进展[J].听力学及言语疾病杂志,2016,24(1):100-104. DOI:10.3969/j.issn.1006-7299.2016.01.027.
Peng Xian, Fu Qiuyang, Wang Tao. Advances in auditory middle latency response research[J]. Journal of Audiology and Speech Pathology, 2016, 24(1): 100-104. DOI:10.3969/j.issn.1006-7299.2016.01.027. (in Chinese)
[9] Weihing J, Musiek F. The influence of aging on interaural asymmetries in middle latency response amplitude.[J]. J Am Acad Audiol, 2014, 25(4): 324-334. DOI:10.3766/jaaa.25.4.4.
[10] Romero A C L, Funayama C A R, Capellini S A, et al. Auditory middle latency response and phonological awareness in students with learning disabilities[J]. Int Arch Otorhinolaryngol, 2015, 19(4): 325-330. DOI:10.1055/s-0035-1551552.
[11] Zhang Y, Wang M, Su Y Y. The role of middle latency evoked potentials in early prediction of favorable outcomes among patients with severe ischemic brain injuries[J]. J Neurol Sci, 2014, 345(1-2): 112-117. DOI:10.1016/j.jns.2014.07.021.
[12] Suzuki T, Hirabayashi M, Kobayashi K. Effects of analog and digital filtering on auditory middle latency responses in adults and young children.[J]. Ann Otol Rhinol Laryngol, 1984, 93(3): 267-270. DOI:10.1177/000348948409300316.
[13] Ramkissoon I, Beverly B L. Auditory middle latency responses in chronic smokers compared to nonsmokers: Differential effects of stimulus and age[J]. Journal of Speech Language & Hearing Research Jslhr, 2014, 57(1): 271-284. DOI:10.1044/1092-4388(2013/12-0309).

备注/Memo

备注/Memo:
收稿日期: 2016-10-12.
作者简介: 徐梦圆(1992—),女,硕士生;邹采荣(联系人),男,博士,教授,博士生导师,cairong@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61375028,61673108)、江苏省“六大人才高峰”资助项目(2016-DZXX-023)、江苏省博士后科研资助计划资助项目(1601011B)、江苏省“青蓝工程”资助项目、广州大学广东省灯光与声视频工程技术研究中心开放基金资助项目(KF201601,KF201602).
引用本文: 徐梦圆,邹采荣,梁瑞宇,等.单电极中潜伏期反应的听觉注意特征提取与识别[J].东南大学学报(自然科学版),2017,47(3):432-437. DOI:10.3969/j.issn.1001-0505.2017.03.003.
更新日期/Last Update: 2017-05-20