[1]潘蕾,赵德材,张俊礼,等.微燃机-冷热电联供机组的Hammerstein模型及非线性广义预测控制[J].东南大学学报(自然科学版),2017,47(3):500-505.[doi:10.3969/j.issn.1001-0505.2017.03.015]
 Pan Lei,Zhao Decai,Zhang Junli,et al.Hammerstein model and nonlinear generalized predictive control of MGT-CCHP[J].Journal of Southeast University (Natural Science Edition),2017,47(3):500-505.[doi:10.3969/j.issn.1001-0505.2017.03.015]
点击复制

微燃机-冷热电联供机组的Hammerstein模型及非线性广义预测控制()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第3期
页码:
500-505
栏目:
能源与动力工程
出版日期:
2017-05-20

文章信息/Info

Title:
Hammerstein model and nonlinear generalized predictive control of MGT-CCHP
作者:
潘蕾1赵德材1张俊礼1沈炯1彭春华2
1东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 2华东交通大学电气与电子工程学院, 南昌 330013
Author(s):
Pan Lei1 Zhao Decai1 Zhang Junli1 Shen Jiong1 Peng Chunhua2
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2School of Electrical & Electronic Engineering, East China Jiaotong University, Nanchang 330013, China
关键词:
微燃机-冷热电联供机组 Hammerstein模型 非线性 广义预测控制
Keywords:
micro gas turbine-combined cooling heating and power unit(MGT-CCHP) Hammerstein model nonlinearity generalized predictive control
分类号:
TK477;TP273
DOI:
10.3969/j.issn.1001-0505.2017.03.015
摘要:
为研究微燃机-冷热电(MGT-CCHP)联供机组动态运行特性及控制策略,采用Hammerstein模型结构快速辨识其非线性动态特性,并将非线性动态特性以串联的非线性静态模型和线性动态模型表示.采用逐步回归法确定动态模型阶次并采用粒子群算法辨识模型参数,得到易于复现的块结构化模型.基于Hammerstein预测模型,设计了MGT-CCHR冷负荷跟踪非线性广义预测控制器.利用Hammerstein模型分块描述对象静态与动态特性的结构特点,将非线性广义预测控制转化为线性广义预测控制与非线性静态函数求根问题,使控制量求解简化.通过与最优参数PID控制器的仿真结果比较表明,所设计的非线性广义预测控制器具有改善冷负荷跟踪性能和节能控制的效果.
Abstract:
To study on dynamic characteristics and control strategy, the nonlinear dynamic characteristic of a micro gas turbine-combined cooling, heating and power unit(MGT-CCHP)was identified with the Hammerstein model and expressed as a nonlinear static model and a linear dynamic model in series. After the order of the dynamic model was determined with the stepwise regression and the model parameters were identified with the particle swarm algorithm, an easily-reproduced block-oriented model is obtained. Then based on the Hammerstein predictive model, a nonlinear generalized predictive controller is designed for the cooling load following of MGT-CCHP. By taking advantage of the separate structure on the static and dynamic characteristics of a plant in a Hammerstein model, the nonlinear generalized predictive control could be transferred into the linear generalized predictive control for finding the root of a nonlinear static function, and thus making the control variable-solving more easily. The simulation results show that the nonlinear generalized predictive controller can improve control performance and is energy-saving than a PID controller with optimal parameters for the cooling load following.

参考文献/References:

[1] 朱成章. 美国冷热电联产纲领及启示[J].中国电力,2000,33(9): 91-94. DOI:10.3969/j.issn.1004-9649.2000.09.025.
Zhu Chengzhang. The programme and its implications of American CCHP system[J]. Chinese Electricity, 2000, 33(9):91-94. DOI:10.3969/j.issn.1004-9649.2000.09.025. (in Chinese)
[2] 张俊礼. 微型燃气轮机冷热电联供系统集成优化与动态运行规律研究[D].南京:东南大学能源与环境学院,2015.
[3] Daher R.Application of artificial intelligence in gas turbine control and modeling[D]: Ottawa,Canada: Department of Mechanical and Aerospace Engineering, Carleton University, 2005.
[4] Sencan A, Yakut K A, Kalogirou S A. Thermodynamic analysis of absorption systems using artificial neural network[J]. Renewable Energy, 2006, 31(1): 29-43. DOI:10.1016/j.renene.2005.03.011.
[5] Liang X F,Wu X,Li Y G,et al.Auto-tuning model predicting control of micro gas turbine combined with cooling heating and power systems[C]//Proceedings of the 8th Asia-Pacific Power and Energy Engineering Conference. Suzhou, China, 2016: 35-40.
[6] 唐贤健. 冷热电联供系统中微型燃气轮机及空调的仿真与控制[D].南宁:广西师范大学物理科学与技术学院,2010.
[7] 刘长良, 任燕燕, 王东风, 等. 热工系统Hammerstein-Wiener 模型辨识[J].计算机仿真,2013,30(9): 394-397. DOI: 10.3969/j.issn.1006-9348.2013.09.092.
Liu Changliang, Ren Yanyan, Wang Dongfeng, et al. The identification of the Hammerstein-Wiener model in thermal system[J]. Computer Simulation, 2013, 30(9):394-397. DOI:10.3969/j.issn.1006-9348.2013.09.092. (in Chinese)
[8] Bloemen H H J, van den Boom T J J, Verbruggen H B. Model-based predictive control for Hammerstein-wiener system[J]. International Journal of Control, 2001, 74(5): 482-495. DOI: 10.1080/00207170010014061.
[9] Ding F,Chen T W.Identification of Hammerstein nonlinear ARMAX systems[J]. Automatica, 2005, 41(9):1479-1489. DOI:10.1016/j.automatica.2005.03.026.
[10] Zhang He, Wang We, Gu Huaizhong. Application of cluster analysis and stepwise regression in predicting the traffic volume of lanes[J].Journal of Southeast University(English Edition), 2005, 21(3):359-362.
[11] Moon S-M, Clark R L, Cole D G. The theory and experiments of recursive generalized predictive control[C]//Proceedings on ASME International Mechanical Engineering Congress and Exposition. New Orleans, LA, USA, 2002:143-154.

备注/Memo

备注/Memo:
收稿日期: 2016-09-26.
作者简介: 潘蕾(1971—),女,博士,副教授,博士生导师, panlei@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51576040,51567007)、国家科技支撑计划资助项目(2015BAA03B02).
引用本文: 潘蕾,赵德材,张俊礼,等.微燃机-冷热电联供机组的Hammerstein模型及非线性广义预测控制[J].东南大学学报(自然科学版),2017,47(3):500-505. DOI:10.3969/j.issn.1001-0505.2017.03.015.
更新日期/Last Update: 2017-05-20