[1]徐俊超,于燕,张军,等.液滴在燃煤细颗粒表面凝结的长大动力学特性[J].东南大学学报(自然科学版),2017,47(3):506-512.[doi:10.3969/j.issn.1001-0505.2017.03.016]
 Xu Junchao,Yu Yan,Zhang Jun,et al.Kinetics study of droplet growth on surface of coal-fired fine particles[J].Journal of Southeast University (Natural Science Edition),2017,47(3):506-512.[doi:10.3969/j.issn.1001-0505.2017.03.016]
点击复制

液滴在燃煤细颗粒表面凝结的长大动力学特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第3期
页码:
506-512
栏目:
能源与动力工程
出版日期:
2017-05-20

文章信息/Info

Title:
Kinetics study of droplet growth on surface of coal-fired fine particles
作者:
徐俊超于燕张军钟辉
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Xu Junchao Yu Yan Zhang Jun Zhong Hui
Key Laboratory of Energy Thermal Conversion Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
液滴 燃煤细颗粒 长大 动力学
Keywords:
droplet coal fired fine particles growth kinetics
分类号:
TK16
DOI:
10.3969/j.issn.1001-0505.2017.03.016
摘要:
为了研究液滴在燃煤细颗粒表面的长大动力学特性,实验测量了水在不同燃煤细颗粒表面的接触角θ,考虑液滴在燃煤细颗粒表面长大的2种作用机制:细颗粒表面水汽的直接扩散凝结和颗粒表面吸附水扩散凝结,对燃煤细颗粒表面单液滴的长大动力学进行了研究.数值讨论了燃煤细颗粒粒径、蒸汽过饱和度、蒸汽温度、液滴半径和颗粒表面润湿性对单液滴在燃煤细颗粒表面长大速率的影响.结果表明:当颗粒粒径小于0.5 μm时,液滴的长大速率随着燃煤细颗粒的增大迅速增大,当粒径大于0.5 μm时,长大速率随着粒径的增大缓慢增长;液滴的长大速率随着过饱和度上升呈指数倍增长,但是随着蒸汽温度的上升而呈现下降的趋势;液滴的长大速率开始随着液滴半径的增大而急剧下降,长大到某一半径后下降的趋势变缓;当0≤cosθ≤0.8时,长大速率随着润湿角余弦值的增大而平缓地增大,当0.8≤cosθ≤1时,长大速率会随着润湿角余弦值的增大而急剧增大.
Abstract:
To study the kinetics of the droplet growth on coal fired fine particle surface, the contact angle of water on coal fired fine particles was experimentally measured. Both the surface vapor direct diffusion condensation and the particle surface adsorption water diffusion condensation mechanisms were considered, the kinetics of the single droplet growth on coal fired fine particle surface was studied. The effects on single droplet growth rate were studied: radius of coal fired fine particles, the vapor supersaturation, vapor temperature, droplet radius, and surface wettability. The results show that when the particle radius is more than 0.5 μm, the droplet growth rate dramatically increases with the increase of the particle radius, when the particle radius is bigger than 0.5 μm, it increases slowly with the increase of the particle radius; the droplet growth rate exponentially increases with the increase of the supersaturation while it decreases with the the vapor temperature; the droplet growth rates sharply decreases with the increase of the droplet radius, but it becomes slowly with the increase of the droplet radius larger than a certain value; when 0≤cosθ≤0.8, the droplet growth rate slowly increases with the increase of the cosine of contact angle, when 0.8≤cosθ≤1, the droplet growth rate rapidly increases with the increase of the cosine of the contact angle.

参考文献/References:

[1] Wu S, Deng F, Wei H, et al. Association of cardiopulmonary health effects with source-appointed Ambient fine particulate in Beijing, China: A combined analysis from the healthy volunteer natural relocation(HVNR)study[J]. Environmental Science & Technology, 2014, 48(6): 3438-3448. DOI:10.1021/es404778w.
[2] Song Y, Zhang Y H, Xie S D, et al. Source apportionment of PM2.5 in Beijing by positive matrix factorization[J]. Atmospheric Environment, 2006, 40(8): 1526-1537. DOI: 10.1016/j.atmosenv.2005.10.039.
[3] 袁竹林,李伟力,魏星,等.声波对悬浮PM2.5作用的数值研究[J].中国电机工程学报,2005,25(8):121-125. DOI:10.3321/j.issn:0258-8013.2005.08.022.
Yuan Zhulin, Li Weili, Wei Xing, et al. Study of the sound wave effect on the PM2.5 suspended in the air by numerical method [J]. Proceedings of the CSEE, 2005, 25(8): 121-125. DOI:10.3321/j.issn:0258-8013.2005.08.022. (in Chinese)
[4] 刘勇,赵汶,刘瑞,等.化学团聚促进电除尘脱除PM2.5的实验研究[J].化工学报,2014,65(9):3609-3616. DOI: 10.3969/j.issn.0438-1157.2014.09.041.
Liu Yong, Zhao Wen, Liu Rui, et al. Improving removal of PM2.5 by electrostatic precipitator with chemical agglomeration [J]. CIESC Jorunal, 2014, 65(9): 3609-3616. DOI:10.3969/j.issn.0438-1157.2014.09.041. (in Chinese)
[5] Ji J, Hwang J, Bae G, et al. Particle charging and agglomeration in DC and AC electric fields[J]. Journal of Electrostatics, 2004, 61(1): 57-68. DOI: 10.1016/j.elstat.2003.12.003.
[6] 徐俊超,张军,周璐璐,等.蒸汽凝结促进PM2.5长大的研究现状[J].现代化工,2014,34(3):20-24.
  Xu Junchao, Zhang Jun, Zhou Lulu, et al. Prospect in vapor condensation for PM2.5 abatement [J]. Modern Chemical Industry, 2014, 34(3): 20-24.(in Chinese)
[7] Yoshida T, Kousaka Y, Okuyama K. Growth of aerosol particles by condensation[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 37-41. DOI:10.1021/i160057a007.
[8] Heidenreich S, Vogt U, Büttner H, et al. A novel process to separate submicron particles from gases—A cascade of packed columns[J]. Chemical Engineering Science, 2000, 55(15): 2895-2905. DOI:10.1016/s0009-2509(99)00554-0.
[9] Fan Y, Qin F, Luo X, et al. A modified expression for the steady-state heterogeneous nucleation rate[J]. Journal of Aerosol Science, 2015, 87: 17-27. DOI: 10.1016/j.jaerosci.2015.05.001.
[10] 凡凤仙,杨林军,袁竹林,等.水汽在燃煤PM2.5表面异质核化特性数值预测[J].化工学报,2007,58(10):2561-2566. DOI:10.3321/j.issn:0438-1157.2007.10.025.
Fan Fengxian, Yang Linjun, Yuan Zhulin, et al. Numerical prediction of water vapor nucleation behavior on PM2.5 from coal combustion[J]. CIESC Jorunal, 2007, 58(10): 2561-2566. DOI:10.3321/j.issn:0438-1157.2007.10.025. (in Chinese)
[11] 颜金培,杨林军,凡凤仙,等.基于分形理论的水汽在燃煤细颗粒表面异质核化数值研究[J].中国电机工程学报,2009,29(11):50-56.
  Yan Jinpei, Yang Linjun, Fan Fengxian, et al. Numerical analysis of water vapor nucleation on fine particles from coal combustion based on fractal model[J]. Proceedings of the CSEE, 2009, 29(11): 50-56.(in Chinese)
[12] 凡凤仙,杨林军,袁竹林,等.水汽在细微颗粒表面异质核化数值分析[J].东南大学学报(自然科学版),2007,37(5):833-838. DOI:10.3321/j.issn:1001-0505.2007.05.019.
Fan Fengxian, Yang Linjun, Yuan Zhulin, et al. Numerical analysis of water vapor nucleation on fine particles[J]. Journal of Southeast University(Natural Science Edition), 2007, 37(5): 833-838. DOI:10.3321/j.issn:1001-0505.2007.05.019. (in Chinese)
[13] Kulmala M. Condensational growth and evaporation in the transition regime[J]. Aerosol Science and Technology, 1993, 19(3): 381-388. DOI: 10.1080/02786829308959645.
[14] Williams M M R. Growth rates of liquid drops for large saturation ratios[J]. Journal of Aerosol Science, 1995, 26(3): 477-487. DOI:10.1016/0021-8502(94)00124-h.
[15] Fuchs N A. Evaporation and droplet growth in gaseous media[M]. London, UK: Pergamonpress, 1959: 759.
[16] Heidenreich S. Condensational droplet growth in the continuum regime—A critical review for the system air-water[J]. Journal of Aerosol Science, 1994, 25(1): 49-59.
[17] Lee Y L, Chou W S, Chen L H. The adsorption and nucleation of water vapor on an insoluble spherical solid particle[J]. Surface Science, 1998, 414(3): 363-373. DOI:10.1016/s0039-6028(98)00441-5.
[18] Kalikmanov V I. Nucleation theory[M/OL]. Springer Netherlands, 2013: 316. http://www.springer.com/cn/book/9789048136421?wt_mc=ThirdParty.SpringerLink.3.EPR653.About_eBook.
[19] Holten V, van Dongen M E H. Comparison between solutions of the general dynamic equation and the kinetic equation for nucleation and droplet growth[J]. The Journal of Chemical Physics, 2009, 130(1): 14102. DOI: 10.1063/1.3054634
[20] Kozǐisěk Z, Demo P. Influence of vapor depletion on nucleation rate[J]. The Journal of Chemical Physics, 2007, 126(18): 184510. DOI: 10.1063/1.2731780.
[21] Pruppacher H R, Klett J D, Wang P K. Microphysics of clouds and precipitation[J]. Aerosol Science and Technology, 1998, 28(4): 381-382. DOI:10.1080/02786829808965531.
[22] Seki J, Hasegawa H. The heterogeneous condensation of interstellar ice grains[J]. Astrophysics and Space Science, 1983, 94(1): 177-189. DOI:10.1007/bf00651770.
[23] Laaksonen A, Vesala T, Kulmala M, et al. Commentary on cloud modelling and the mass accommodation coefficient of water[J]. Atmospheric Chemistry and Physics, 2005, 5(2): 461-464. DOI: 1680-7324/acp/2005-5-461.
[24] Fletcher N H. Size effect in hetergeneous nucleation[J]. The Journal of Chemical Physics, 1958, 29(3): 572-576. DOI:10.1063/1.1744540.
[25] 滕新荣.表面物理化学[M].北京:化学工业出版社,2009:234.
[26] Xu J, Zhang J, Yu Y, et al. Characteristics of vapor condensation on coal-fired fine particles[J]. Energy & Fuels, 2016, 30(3): 1822-1828. DOI: 10.1021/acs.energyfuels.5b02200.

相似文献/References:

[1]施明恒.运动液滴的LEIDENFROST现象[J].东南大学学报(自然科学版),1985,15(3):83.[doi:10.3969/j.issn.1001-0505.1985.03.010]
 Shi Mingheng.The Leidenfrost Temperature of a falling Liquid Droplet[J].Journal of Southeast University (Natural Science Edition),1985,15(3):83.[doi:10.3969/j.issn.1001-0505.1985.03.010]
[2]沈超群,陈永平,施明恒.悬滴与卧滴合并行为特性[J].东南大学学报(自然科学版),2015,45(1):74.[doi:10.3969/j.issn.1001-0505.2015.01.014]
 Shen Chaoqun,Chen Yongping,Shi Mingheng.Coalescence characteristic of pendent and sessile droplets[J].Journal of Southeast University (Natural Science Edition),2015,45(3):74.[doi:10.3969/j.issn.1001-0505.2015.01.014]
[3]王程遥,张程宾,陈永平,等.剪切流场下液滴碰撞的流变特性[J].东南大学学报(自然科学版),2015,45(2):309.[doi:10.3969/j.issn.1001-0505.2015.02.020]
 Wang Chengyao,Zhang Chengbin,Chen Yongping,et al.Rheological behavior of interactive drops in shear flow[J].Journal of Southeast University (Natural Science Edition),2015,45(3):309.[doi:10.3969/j.issn.1001-0505.2015.02.020]

备注/Memo

备注/Memo:
收稿日期: 2016-10-06.
作者简介: 徐俊超(1990—),男,博士生;张军(联系人),男,博士,教授,博士生导师,junzhang@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51576043)、国家重点基础研究发展计划(973计划)资助项目(2013CB228504)、江苏省普通高校研究生科研创新计划资助项目(KYLX16_0202)、东南大学优秀博士学位论文培育基金资助项目(YBJJ1607).
引用本文: 徐俊超,于燕,张军,等.液滴在燃煤细颗粒表面凝结的长大动力学特性[J].东南大学学报(自然科学版),2017,47(3):506-512. DOI:10.3969/j.issn.1001-0505.2017.03.016.
更新日期/Last Update: 2017-05-20