[1]何鹏飞,沈德魁,刘国富.改性SAPO-34分子筛催化剂的SCR脱硝性能[J].东南大学学报(自然科学版),2017,47(3):513-520.[doi:10.3969/j.issn.1001-0505.2017.03.017]
 He Pengfei,Shen Dekui,Liu Guofu.NH3-SCR performance of modified SAPO-34 molecular sieve[J].Journal of Southeast University (Natural Science Edition),2017,47(3):513-520.[doi:10.3969/j.issn.1001-0505.2017.03.017]
点击复制

改性SAPO-34分子筛催化剂的SCR脱硝性能()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第3期
页码:
513-520
栏目:
环境科学与工程
出版日期:
2017-05-20

文章信息/Info

Title:
NH3-SCR performance of modified SAPO-34 molecular sieve
作者:
何鹏飞沈德魁刘国富
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
He Pengfei Shen Dekui Liu Guofu
Key Laboratory of Energy Thermal Conversation and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
SCR 负载型催化剂 SAPO-34分子筛 氮氧化物
Keywords:
selective catalytic reduction impregnated catalyst SAPO-34 molecular sieve nitrogen oxides
分类号:
X511
DOI:
10.3969/j.issn.1001-0505.2017.03.017
摘要:
采用浸渍法负载Cu,Mn及Cu-Mn双金属,制备以菱沸石分子筛SAPO-34为载体的低温、廉价、高效的负载型选择性催化还原(SCR)脱硝催化剂.考察了不同活性组分、负载量及煅烧温度对氨选择性催化还原(NH3-SCR)催化剂活性的影响,并通过BET,XRD,NH3-TPD,TEM,XPS等多种表征手段对催化剂进行分析.活性测试结果表明,Cu-Mn双金属共同负载的催化剂活性明显优于Cu或Mn单金属负载的催化剂活性,当Cu,Mn的负载量分别为2%和6%,煅烧温度为450 ℃时,催化剂的活性最佳,在温度为180~330 ℃之间脱硝效率均能达到90%以上.分析结果表明,Cu-Mn双金属共同负载与单独负载Cu或Mn相比,能够减弱活性组分与分子筛载体的作用,在催化剂表面促进活性组分分散得更加均匀,同时Cu的引入增加了高价态Mn4+和Mn3+的比例,有利于提高催化剂的活性,引入Mn可适当调节Cu2+与Cu+的比例,有利于拓宽催化剂的活性温度窗口.
Abstract:
The new impregnated catalyst with low temperature, low cost and high efficiency was prepared for NH3-SCR denitration by choosing SAPO-34 molecular sieve as support and impregnating Cu, Mn and Cu-Mn. Three factors were studied, such as different active ingredients, impregnated quantity, calcination temperature, and characterized means using nitrogen adsorption-desorption(BET), X-ray diffraction(XRD), NH3 temperature programmed desorption(NH3-TPD), transmission electron microscope(TEM)and X-ray photoelectron spectroscopy(XPS). The activity test results show that Cu-Mn bimetallic co-load is better than that of Cu or Mn single metal supported catalyst. When the loading amounts of Cu and Mn are 2% and 6% respectively, the calcination temperature is 450 ℃, the activity of the catalyst is the best, and it can reach 90% or more between 180 to 330 ℃. The analysis results show that compared with loading Cu or Mn, the Cu-Mn can weaken the effects on the active component and the molecular sieve, promote active component dispersed more evenly on the surface of the catalyst. The introduction of Cu can increase the ratio of valent Mn and improve the activity of the catalyst, the introduction of Mn can properly adjust the rate of Cu2+/Cu+ and broaden the activity temperature window of the catalyst.

参考文献/References:

[1] 吴海苗,王晓波,归柯庭.以活性炭为载体的负载型催化剂的SCR脱硝性能[J].东南大学学报(自然科学版),2013,43(4):814-818. DOI:10.3969/j.issn.1001-0505.2013.04.026.
Wu Haimiao, Wang Xiaobo, Gui Keting. Performance of SCR denitration of impregnated catalysts using activated carbon as support[J]. Journal of Southeast University(Natural Science Edition), 2013, 43(4): 814-818. DOI:10.3969/j.issn.1001-0505.2013.04.026. (in Chinese)
[2] 柳清华.简述选择性催化还原法(SCR)烟气脱硝技术[J].锅炉制造,2008(3):42-43. DOI:10.3969/j.issn.1674-1005.2008.03.016.
Liu Qinghu. Introduces technology of NOxx with the selective catalytic reduction[J]. Boiler Manufaciurng, 2008(3): 42-43. DOI:10.3969/j.issn.1674-1005.2008.03.016. (in Chinese)
[3] Chen L, Li J, Ge M. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOxx by NH3[J]. Chemical Engineering Journal, 2011, 170(2): 531-537. DOI:10.1016/j.cej.2010.11.020.
[4] 蔡卡莎,张相俊,李岩,等.稀土Cu/HZSM-5催化剂NH3选择性催化还原法低温脱硝性能[J].工业催化,2015,23(12):1027-1030. DOI:10.3969/j.issn.1008-1143.2015.12.014.
Cai Kasha, Zhang Xiangjun, Li Yan, et al. Performance of rare earth-Cu/HZSM-5 catalysts for selective catalytic reduction of NO by NH3 at low temperature[J]. Industrial Catalysis, 2015, 23(12): 1027-1030. DOI:10.3969/j.issn.1008-1143.2015.12.014. (in Chinese)
[5] 杜学森.钛基SCR脱硝催化剂中毒失活及抗中毒机理的实验和分子模拟研究[D].杭州:浙江大学能源工程学系, 2014.
[6] Kim Y J, Kwon H J, Heo I, et al. Mn-Fe/ZSM-5 as a low-temperature SCR catalyst to remove NOxx from diesel engine exhaust[J]. Applied Catalysis B: Environmental, 2012, 126: 9-21. DOI:10.1016/j.apcatb.2012.06.010.
[7] Park J H, Park H J, Baik J H, et al. Hydrothermal stability of Cu-ZSM-5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process[J]. Journal of Catalysis, 2006, 240(1): 47-57. DOI:10.1016/j.jcat.2006.03.001.
[8] 张捷.Fe-CuOxx/ZSM-5催化剂的合成、表征及其脱硝性能的研究[D].南京:南京理工大学化工学院,2014.
[9] 赵地顺.催化剂评价与表征[M].北京:化学工业出版社,2011:40-80.
[10] Liu G, Tian P, Li J, et al. Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template[J]. Microporous and Mesoporous Materials, 2008, 111(1/2/3): 143-149. DOI:10.1016/j.micromeso.2007.07.023.
[11] Tan J, Liu Z, Bao X, et al. Crystallization and Si incorporation mechanisms of SAPO-34[J]. Microporous and Mesoporous Materials, 2002, 53(1): 97-108. DOI:10.1016/s1387-1811(02)00329-3.
[12] 石琳.NH3和NOxx在Cu/SAPO-34分子筛催化剂`表面的吸附特性及在SCR反应过程中作用的研究[D].天津: 天津大学化工学院,2013.
[13] Wang L, Li W, Qi G, et al. Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3[J]. Journal of Catalysis, 2012, 289: 21-29. DOI:10.1016/j.jcat.2012.01.012.
[14] 陈锋,黄碧纯,杨颖欣,等.MnSAPO-34分子筛的制备、表征及其NH3-SCR活性[J].物理化学学报,2015,31(12):2375-2385. DOI:10.3866/PKU.WHXB201510201.
Chen Feng, Huang Bichun, Yang Yingxin, et al. Synthesis,characterization and NH3-SCR activity of MnSAPO-34 molecular sieves[J]. Acta Physico-Chimica Sinica, 2015, 31(12): 2375-2385. DOI:10.3866/PKU.WHXB201510201. (in Chinese)
[15] 张秋林,邱春天,徐海迪,等.整体式Cu-ZSM-5催化剂上NH3选择性催化还原NO活性[J].催化学报.2010,31(11):1411-1416. DOI:10.3724/SP.J.1088.2010.00524.
Zhang Qiulin, Qiu Chuntian, Xu Haidi, et al. Activity of monolith Cu-ZSM-5 catalyst for selective catalytic reduction of NO with NH3[J]. Chinese Journal of Catalysts, 2010, 31(11): 1411-1416. DOI:10.3724/SP.J.1088.2010.00524. (in Chinese)
[16] Machida M, Uto M, Daisuke Kurogi A, et al. MnOxx-CeO2 binary oxides for catalytic NOxx sorption at low temperatures sorptive removal of NOxx[J]. Chemistry of Materials, 2000, 12(10): 3158-3164. DOI:10.1021/cm000207r.
[17] Wu Z, Jiang B, Liu Y, et al. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Environmental Science & Technology, 2007, 41(16): 5812-5817. DOI:10.1021/es0700350.
[18] Shu Y, Sun H, Quan X, et al. Enhancement of catalytic activity over the iron-modified Ce/TiO2 catalyst for selective catalytic reduction of NOxx with ammonia[J]. The Journal of Physical Chemistry C, 2012, 116(48): 25319-25327. DOI:10.1021/jp307038q.
[19] Guan B, Lin H, Zhu L, et al. Selective catalytic reduction of NOxx with NH3 over Mn, Ce substitution Ti0.9V0.1O2-δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method[J]. The Journal of Physical Chemistry C, 2011, 115(26): 12850-12863. DOI:10.1021/jp112283g.
[20] Liu F, He H. Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst: reaction mechanism and H2O/SO2 inhibition mechanism study[J]. Catalysis Today, 2010, 153(3): 70-76. DOI:10.1016/j.cattod.2010.02.043.
[21] Yu C, Wang L, Huang B. In situ DRIFTS study of the low temperature selective catalytic reduction of NO with NH3 over MnOxx supported on multi-walled carbon nanotubes catalysts[J]. Aerosol and Air Quality Research, 2015, 15(3): 1017-1027. DOI:10.4209/aaqr.2014.08.0162.
[22] 张信莉,王栋,彭建升,等.煅烧温度对Mn改性γ-Fe2O3催化剂结构及低温SCR脱硝活性的影响[J].燃料化学学报,2015,43(2):243-250. DOI:10.3969/j.issn.0253-2409.2015.02.016.
Zhang Xinli, Wang Dong, Peng Jiansheng, et al. Influence of calcination temperature on structural property of Mn doped γ-Fe2O3 catalysts and low-temperature SCR activity[J]. Journal of Fuel Chemistry and Technology, 2015, 43(2): 243-250. DOI:10.3969/j.issn.0253-2409.2015.02.016. (in Chinese)
[23] 董月红,薛建明,李兵,等.一种新型SCR脱硝催化剂的制备研究[J].电力科技与环保,2015,31(5):17-19. DOI:10.3969/j.issn.1674-8069.2015.05.006.
Dong Yuehong, Xue Jianming, Li Bing, et al. Research on preparation of a new SCR denitration catalyst[J]. Electric Power Technology and Environmental Protection, 2015, 31(5): 17-19. DOI:10.3969/j.issn.1674-8069.2015.05.006. (in Chinese)
[24] 陈璐,王润伟,丁双,等.具有多级孔的SAPO-34-H分子筛的合成与表征[J].高等学校化学学报,2010,31(9):1693-1696.
  Chen Lu, Wang Runwei, Ding Shuang, et al. Synthesis and characterization of SAPO-34-H molecular sieve with multi-stage hole[J]. Chemical Journal of Chinese Universities, 2010, 31(9): 1693-1696.(in Chinese)
[25] Qi G, Yang R T. Characterization and FTIR studies of MnOxx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. The Journal of Physical Chemistry B, 2004, 108(40): 15738-15747. DOI:10.1021/jp048431h.
[26] Strohmeier B R, Hercules D M. Surface spectroscopic characterization of manganese/aluminum oxide catalysts[J]. The Journal of Physical Chemistry, 1984, 88(21): 4922-4929. DOI:10.1002/chin.198502033.
[27] Nesbitt H, Banerjee D. Interpretation of XPS Mn(2p)spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation[J]. American Mineralogist, 1998, 83(3/4): 305-315. DOI:10.2138/am-1998-3-414.
[28] Chen Z, Wang F, Li H, et al. Low-temperature selective catalytic reduction of NOxx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase[J]. Industrial & Engineering Chemistry Research, 2011, 51(1): 202-212. DOI:10.1021/ie201894c..
[29] López M, Galiana B, Algora C, et al. Chemical characterization by XPS of Cu/Ge ohmic contacts to n-GaAs[J]. Applied Surface Science, 2007, 253(11): 5062-5066. DOI:10.1016/j.apsusc.2006.11.013.
[30] Liu F D, Shan W P, Shi X Y, et al. Research progress in vanadium-free catalysts for the selective catalytic reduction of NO with NH3[J]. Chinese Journal of Catalysis, 2011, 32(7): 1112-1128. DOI:10.3724/sp.j.1088.2011.10315.
[31] Pereda A B, de la Torre U, Illán Gómez M J, et al. Role of the different copper species on the activity of Cu/zeolite catalysts for SCR of NOxx with NH3[J]. Applied Catalysis B: Environmental, 2014, 147: 420-428. DOI:10.1016/j.apcatb.2013.09.010.
[32] Shan J H, Liu X Q, Sun L B, et al. Cu-Ce bimetal ion-exchanged Y zeolites for selective adsorption of thiophenic sulfur[J]. Energy & Fuels, 2008, 22(6): 3955-3959. DOI:10.1021/ef800296n.
[33] Choi E Y, Nam I S, Kim Y G. TPD study of mordenite-type zeolites for selective catalytic reduction of NO by NH3[J]. Journal of Catalysis, 1996, 161(2): 597-604. DOI:10.1006/jcat.1996.0222.
[34] Corma A, Palomares A, Márquez F. Determining the nature of the active sites of Cu-beta zeolites for the selective catalytic reduction(SCR)of NOxx by using a coupled reaction-XAES/XPS study[J]. Journal of Catalysis, 1997, 170(1): 132-139. DOI:10.1006/jcat.1997.1739.

相似文献/References:

[1]吴海苗,王晓波,归柯庭.以活性炭为载体的负载型催化剂的SCR脱硝性能[J].东南大学学报(自然科学版),2013,43(4):814.[doi:10.3969/j.issn.1001-0505.2013.04.026]
 Wu Haimiao,Wang Xiaobo,Gui Keting.Performance of SCR denitration of impregnated catalysts using activated carbon as support[J].Journal of Southeast University (Natural Science Edition),2013,43(3):814.[doi:10.3969/j.issn.1001-0505.2013.04.026]
[2]汪小蕾,朴桂林,谢浩,等.活性炭选择性催化还原NOx[J].东南大学学报(自然科学版),2011,41(1):145.[doi:10.3969/j.issn.1001-0505.2011.01.028]
 Wang Xiaolei,Piao Guilin,Xie Hao,et al.Selective catalytic reduction of NOx by activated carbon[J].Journal of Southeast University (Natural Science Edition),2011,41(3):145.[doi:10.3969/j.issn.1001-0505.2011.01.028]
[3]付忆华,陈曦,钟文琪,等.基于CFD和RSM的船舶SCR脱硝装置结构优化[J].东南大学学报(自然科学版),2019,49(3):549.[doi:10.3969/j.issn.1001-0505.2019.03.021]
 Fu Yihua,Chen Xi,Zhong Wenqi,et al.Structure optimization of vessel SCR based on CFD and RSM[J].Journal of Southeast University (Natural Science Edition),2019,49(3):549.[doi:10.3969/j.issn.1001-0505.2019.03.021]

备注/Memo

备注/Memo:
收稿日期: 2016-08-12.
作者简介: 何鹏飞(1990—),男,硕士生;沈德魁(联系人),男,博士,副教授,博士生导师,101011398@seu.edu.cn.
基金项目: 江苏省科技厅社会发展类资助项目(BE2015677).
引用本文: 何鹏飞,沈德魁,刘国富.改性SAPO-34分子筛催化剂的SCR脱硝性能[J].东南大学学报(自然科学版),2017,47(3):513-520. DOI:10.3969/j.issn.1001-0505.2017.03.017.
更新日期/Last Update: 2017-05-20