[1]李慧乐,夏禾,宗周红.列车作用下桥梁应力响应计算方法比较[J].东南大学学报(自然科学版),2017,47(3):576-583.[doi:10.3969/j.issn.1001-0505.2017.03.027]
 Li Huile,Xia He,Zong Zhouhong.Comparison of computation methods for stress response of bridges under train load[J].Journal of Southeast University (Natural Science Edition),2017,47(3):576-583.[doi:10.3969/j.issn.1001-0505.2017.03.027]
点击复制

列车作用下桥梁应力响应计算方法比较()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第3期
页码:
576-583
栏目:
交通运输工程
出版日期:
2017-05-20

文章信息/Info

Title:
Comparison of computation methods for stress response of bridges under train load
作者:
李慧乐1夏禾2宗周红1
1东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 210096; 2北京交通大学土木建筑工程学院, 北京 100044
Author(s):
Li Huile1 Xia He2 Zong Zhouhong1
1Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China
2School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
关键词:
应力分析 车桥耦合振动 现场测试 车速 横向振动
Keywords:
stress analysis train-bridge coupled vibration field test train speed lateral vibration
分类号:
U448.13
DOI:
10.3969/j.issn.1001-0505.2017.03.027
摘要:
为有效分析列车引起的桥梁应力响应,对车桥耦合动力分析法、静力影响线法及移动集中力法3种列车作用下的桥梁应力响应计算方法进行了深入的比较研究.采用3种方法对2座铁路典型混凝土简支T梁和下承式钢桁梁桥进行应力响应分析, 基于桥梁现场实测数据对比分析了不同方法的计算结果,研究了列车速度和桥梁横向振动对应力结果的影响.结果表明:车速对桥梁应力响应有显著的影响,共振发生时3种方法的计算结果相差较大,消振条件下三者区别减小;由列车水平方向作用力引起的桥梁或构件横向振动对应力响应的贡献不容忽视;车桥耦合动力分析法能够更为真实地反映桥梁构件的动应力历程,在高速、桥梁横向刚度较低或列车局部加载的情况下尤其具有计算精度优势.研究结果可为3种不同计算方法的工程应用提供参考.
Abstract:
To effectively analyze the train-induced stress responses of bridges, a comparative study on three computation methods for the stress responses of bridges under train loads, namely, the train-bridge coupled vibration analysis method, the static influence line method, and the moving concentrated load method is performed. The stress responses of two typical railway bridges, a concrete simply-supported T beam bridge and a steel through truss girder bridge, are analyzed through the three methods. The computation results from various methods are compared and analyzed by using the data measured at the bridge sites. The influences of the train speed and the bridge lateral vibration on the stress results are investigated. The results show that the train speed significantly affects the bridge stress responses. Considerable differences are found in the computation results obtained from the three methods when the vibration resonance occurs, while the differences are reduced under the condition of the vibration cancellation. The contributions of the lateral vibrations of the bridges or the components induced by the horizontal train loading to the stress responses cannot be neglected. The train-bridge coupled vibration analysis method can more truly reflect the dynamic stress histories, and especially has the advantages of calculation accuracy in the cases of high speed, low lateral bridge stiffness, or local train loading. The results can provide references for the engineering applications of three different computation methods.

参考文献/References:

[1] Nowack H, Schulz U. Significance of finite element methods(FEM)in fatigue analysis [C]//Fatigue’96: Proceedings of the 6th International Fatigue Conference. Berlin, Germany, 1996: 1057-1068.DOI:10.1016/b978-008042268-8/50052-6.
[2] British Standards Institution. Steel, concrete and composite bridges: Part 10: Code of practice for fatigue [S]. London: British Standards Institution, 1980.
[3] 中铁大桥勘测设计院有限公司. TB 10002.2—2005 铁路桥梁钢结构设计规范 [S]. 北京:中国铁道出版社, 2005.
[4] British Standards Institution. Steel, concrete and composite bridges: Part 2: Specification for loads [S]. London: British Standards Institution, 2006.
[5] European Committee for Standardization. Actions on structures: Part 2: Traffic loads on bridges [S]. Brussels: European Committee for Standardization, 2003.
[6] American Railway Engineering Association(AREA). Manual for railway engineering [S]. Washington DC, USA: AREA, 1983.
[7] Imam B M, Righiniotis T D, Chryssanthopoulos M K. Probabilistic fatigue evaluation of riveted railway bridges [J]. Journal of Bridge Engineering, 2008, 13(3): 237-244. DOI:10.1061/(asce)1084-0702(2008)13:3(237).
[8] Lippi F V, Orlando M, Salvatore W. Assessment of the dynamic and fatigue behaviour of the Panaro railway steel bridge[J]. Structure and Infrastructure Engineering, 2013, 9(8): 834-848. DOI:10.1080/15732479.2011.625955.
[9] Zhou H, Liu K, Shi G, et al. Fatigue assessment of a composite railway bridge for high speed trains. Part Ⅰ: Modeling and fatigue critical details [J]. Journal of Constructional Steel Research, 2013, 82: 234-245. DOI:10.1016/j.jcsr.2012.12.006.
[10] 夏禾, 张楠. 车辆与结构动力相互作用 [M]. 北京: 科学出版社, 2005: 140-198.
[11] 郭文华, 郭向荣, 曾庆元. 京沪高速铁路南京长江大桥斜拉桥方案车桥系统振动分析[J]. 土木工程学报, 1999, 32(3): 23-27. DOI:10.3321/j.issn:1000-131X.1999.03.004.
Guo Wenhua, Guo Xiangrong, Zeng Qingyuan. Vibration analysis of train-bridge system for cable-stayed bridge scheme of Nanjing Yangtse Bridge on Beijing-Shanghai high speed railway [J]. China Civil Engineering Journal, 1999, 32(3): 23-27. DOI:10.3321/j.issn:1000-131X.1999.03.004. (in Chinese)
[12] 李小珍. 高速铁路列车-桥梁系统耦合振动理论及应用研究 [D]. 成都: 西南交通大学土木工程学院, 2000.
[13] 高芒芒. 高速铁路列车-线路-桥梁耦合振动及列车走行性研究 [J]. 中国铁道科学, 2002, 23(2): 135-138. DOI:10.3321/j.issn:1001-4632.2002.02.024.
Gao Mangmang. Studies on train-track-bridge coupling vibration and train performance on high-speed railway bridges [J]. China Railway Science, 2002, 23(2): 135-138. DOI:10.3321/j.issn:1001-4632.2002.02.024. (in Chinese)
[14] 李永乐, 强士中, 廖海黎. 风-车-桥系统空间耦合振动研究[J]. 土木工程学报, 2005, 38(7): 61-64,70. DOI:10.3321/j.issn:1000-131X.2005.07.012.
Li Yongle, Qiang Shizhong, Liao Haili. 3D coupled vibration of wind-vehicle-bridge system[J]. China Civil Engineering Journal, 2005, 38(7): 61-64,70. DOI:10.3321/j.issn:1000-131X.2005.07.012. (in Chinese)
[15] 李慧乐, 夏禾, 张楠, 等. 基于车桥耦合动力分析的桥梁动应力计算方法 [J]. 中国铁道科学, 2015, 36(1): 68-74. DOI:10.3969/j.issn.1001-4632.2015.01.10.
Li Huile, Xia He, Zhang Nan, et al. Calculation method for dynamic stress of bridge based on vehicle-bridge coupled dynamic analysis [J]. China Railway Science, 2015, 36(1): 68-74. DOI:10.3969/j.issn.1001-4632.2015.01.10. (in Chinese)
[16] Xu Y L, Li Q, Wu D J, et al. Stress and acceleration analysis of coupled vehicle and long-span bridge systems using the mode superposition method[J]. Engineering Structures, 2010, 32(5): 1356-1368. DOI:10.1016/j.engstruct.2010.01.013.
[17] 李慧乐, 夏禾, 郭薇薇. 简支梁在列车荷载下的共振与消振效应 [J]. 振动工程学报, 2014, 27(2): 172-179. DOI:10.3969/j.issn.1004-4523.2014.02.003.
Li Huile, Xia He, Guo Weiwei. Effects of vibration resonance and cancellation for simple beams under train load [J]. Journal of Vibration Engineering, 2014, 27(2): 172-179. DOI:10.3969/j.issn.1004-4523.2014.02.003. (in Chinese)
[18] 北京铁路局工务处桥梁检定队. 京通线K83+743白河大桥常规检定评估试验报告 [R]. 北京: 北京铁路局工务处桥梁检定队, 2012.

备注/Memo

备注/Memo:
收稿日期: 2016-09-22.
作者简介: 李慧乐(1987—),男,博士,讲师,huile.li@seu.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2013CB036203)、“十二五”国家科技支撑计划资助项目(2014BAK11B04)、国家自然科学基金资助项目(51528802).
引用本文: 李慧乐,夏禾,宗周红.列车作用下桥梁应力响应计算方法比较[J].东南大学学报(自然科学版),2017,47(3):576-583. DOI:10.3969/j.issn.1001-0505.2017.03.027.
更新日期/Last Update: 2017-05-20