参考文献/References:
[1] Kimura H, Fukuoka Y, Cohen A H. Biologically inspired adaptive walking of a quadruped robot[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1850): 153-170. DOI:10.1098/rsta.2006.1919.
[2] 张秀丽. 四足机器人节律运动及环境适应性的生物控制研究[D]. 北京: 清华大学精密仪器与机械学系, 2004.
[3] Shkolnik A, Levashov M, Manchester I R, et al. Bounding on rough terrain with the LittleDog robot[J]. The International Journal of Robotics Research, 2011, 30(2): 192-215. DOI:10.1177/0278364910388315.
[4] Kolter J Z, Ng A Y. The Stanford LittleDog: A learning and rapid replanning approach to quadruped locomotion[J]. The International Journal of Robotics Research, 2011, 30(2): 150-174. DOI:10.1177/0278364910390537.
[5] Zucker M, Ratliff N, Stolle M, et al. Optimization and learning for rough terrain legged locomotion[J]. The International Journal of Robotics Research, 2011, 30(2): 175-191. DOI:10.1177/0278364910392608.
[6] Gehring C, Bellicoso C D, Coros S, et al. Dynamic trotting on slopes for quadrupedal robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany, 2015: 5129-5135. DOI: 10.1109/IROS.2015.7354099.
[7] Fukuoka Y, Kimura H. Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts[J]. The International Journal of Robotics Research, 2003, 22(3): 187-202. DOI:10.1177/0278364903022003004.
[8] Spröwitz A, Tuleu A, Vespignani M, et al. Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot[J]. The International Journal of Robotics Research, 2013, 32(8): 932-950. DOI: 10.1177/0278364913489205.
[9] Heim S W, Ajallooeian M, Eckert P, et al. On designing an active tail for body-pitch control in legged robots via decoupling of control objectives[C]//Assistive Robotics: Proceedings of the 18th International Conference on CLAWAR 2015. Hangzhou, China, 2015:256-264.
[10] Arena P, Fortuna L, Frasca M, et al. Learning anticipation via spiking networks: Application to navigation control[J]. IEEE Transactions on Neural Networks, 2009, 20(2): 202-216. DOI: 10.1109/TNN.2008.2005134.
[11] Zhang X L, E M C. Adaptive walking of a quadrupedal robot based on layered biological reflexes[J]. Chinese Journal of Mechanical Engineering, 2012, 25(4): 654-664. DOI: 10.3901/CJME.2012.04.654.
[12] 鄂明成, 刘虎, 张秀丽, 等. 一种粗糙地形下四足仿生机器人的柔顺步态生成方法[J]. 机器人, 2014,36(5): 584-591. DOI:10.13973/j.cnki.robot.2014.0584.
E Mingcheng, Liu Hu, Zhang Xiuli, et al. Compliant gait generation for a quadruped bionic robot walking on rough terrains[J]. Robot, 2014, 36(5): 584-591. DOI:10.13973/j.cnki.robot.2014.0584. (in Chinese)
[13] Vonásek V, Saska M, Winkler L, et al. High-level motion planning for CPG-driven modular robots[J]. Robotics and Autonomous Systems, 2015, 68: 116-128. DOI: 10.1016/j.robot.2015.01.006.
相似文献/References:
[1]韦中,宋光明,孙慧玉,等.脊柱型四足机器人运动学建模及对角小跑步态规划[J].东南大学学报(自然科学版),2019,49(6):1019.[doi:10.3969/j.issn.1001-0505.2019.06.001]
Wei Zhong,Song Guangming,Sun Huiyu,et al.Kinematic modeling and trotting gait planning for the quadruped robot with an active spine[J].Journal of Southeast University (Natural Science Edition),2019,49(4):1019.[doi:10.3969/j.issn.1001-0505.2019.06.001]